Features of heterogeneous catalytic transformations of strained carbocyclic compounds of the norbornene series
https://doi.org/10.32362/2410-6593-2022-17-4-275-297
Abstract
Objectives. Catalytic processes involving norbornene (NBN) and norbornadiene (NBD) offer exceptional opportunities for the synthesis of a wide range of hard-to-reach polycyclic hydrocarbons. The problems of selectivity and manufacturability of these reactions are fundamentally important for their practical implementation. The aim of this review is to summarize the latest advances in the field of designing heterogeneous catalysts for the preparation and transformation of promising NBN- and NBD-derivatives with the maintenance of a strained carbocyclic framework in isomerization and dimerization reactions of these compounds.
Results. Various strategies for the selection of catalysts and prospects for the development of heterogeneous catalysis for syntheses based on NBN and NBD derivatives were considered. The possibility of selective cyclic dimerization and isomerization of NBN and NBD was shown. The factors that affect the direction of the reactions and make it possible to maintain the strained norbornane structure were discussed.
Conclusions. An analysis of the current state of this problem showed that at present, the technological parameters of the conversion of NBD and NBN derivatives with the participation of heterogeneous catalysts are significantly inferior to homogeneous systems. In order to improve the productivity of these processes and design catalyst regeneration, further investigations are required. However, some progress in these areas has already been made. In a number of processes, it is possible not only to maintain the strained carbocyclic framework, but also to establish ways to control regio- and stereo-selectivity. In some cases, the use of heterogeneous catalysts allows the process to be direct into a completely new path, which has no analogues for homogeneous systems.
About the Authors
S. A. DurakovRussian Federation
Sergey A. Durakov, Cand. Sci. (Chem.), Associate Professor, Department of Physical Chemistry
86, Vernadskogo pr., Moscow, 119571
Scopus Author ID 57194217518
ResearcherID AAS-6578-2020
RSCI SPIN-code 9420-3916
A. A. Kolobov
Russian Federation
Alexey A. Kolobov, Student, Department of Physical Chemistry
86, Vernadskogo pr., Moscow, 119571
V. R. Flid
Russian Federation
Vitaly R. Flid, Dr. Sci. (Chem.), Professor, Head of the Department of Physical Chemistry
86, Vernadskogo pr., Moscow, 119571
Scopus Author ID 6602997346
ResearcherID H-1781-2017
RSCI SPIN-code 8790-3380
References
1. Flid V.R., Gringolts M.L., Shamsiev R.S., Finkelshtein E.S. Norbornene, norbornadiene and their derivatives: promising semi-products for organic synthesis and production of polymeric materials. Russ. Chem. Rev. 2018;87(12):1169–1205. https://doi.org/10.1070/RCR4834
2. Gusevskaya E.V., Jiménez-Pinto J., Börner A. Hydroformylation in the Realm of Scents. ChemCatChem. 2014;6(2):382–411. https://doi.org/10.1002/cctc.201300474
3. González A.G., Barrera J.B. Chemistry and Sources of Mono- and Bicyclic Sesquiterpenes from Ferula Species. In: Herz W., Kirby G.W., Moore R.E., Steglich W., Tamm C. (Eds.). Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Vienna: Springer; 1995. V. 64. P. 1–92. https://doi.org/10.1007/978-3-7091-9337-2_1
4. Mane J., Clinet I., Muratore A., Clinet J.-C., Chanot J.-J. New aldehydes with norbornane structures, their preparation and use in perfume making: Pat. EP2112132A1. Publ. 28.10.2009.
5. Buchbauer G., Stappen I., Pretterklieber C., Wolschann P. Structure–activity relationships of sandalwood odorants: synthesis and odor of tricyclo β-santalol. Eur. J. Med. Chem. 2004;39(12):1039–1046. https://doi.org/10.1016/j.ejmech.2004.09.014
6. Monti H., Corriol C., Bertrand M. Synthese stereoselective DU (±)-β-santalol. Tetrahedron Lett. 1982;23(52):5539–5540. https://doi.org/10.1016/S0040-4039(00)85888-8
7. Corey E.J., Shibasaki M., Nicolaoua K.C., Malmsten C.L., Samuelsson B. Simple, stereocontrolled total synthesis of a biologically active analog of the prostaglandin endoperoxides (PGH2, PGG2). Tetrahedron Lett. 1976;(10):737–740. https://doi.org/10.1016/s0040-4039(00)77938-x
8. Lee M., Ikeda I., Kawabe T., Mori S., Kanematsu K. Enantioselective Total Synthesis of cis-Trikentrin B. J. Org. Chem. 1996;61(10):3406–3416. https://doi.org/10.1021/jo951767q
9. Hajiyeva G.E. Biologically Active Norbornene Derivatives: Synthesis of Bicyclo[2.2.1]heptene Mannich Bases. Chemistry for Sustainable Development. 2021;29(4):391–410. https://doi.org/10.15372/CSD2021317
10. Songstad D.D., Duncan D.R., Widholm J.M. Effect of l-aminocyclopropane-l-carboxylic acid, silver nitrate, and norbornadiene on plant regeneration from maize callus cultures. Plant Cell Reports. 1988;7(4):262–265. https://doi.org/10.1007/bf00272538
11. Brar M.S., Moore M.J., Al-Khayri J.M., Morelock T.E., Anderson E.J. Ethylene inhibitors promote in vitro regeneration of cowpea (Vigna Unguiculata L.). In Vitro Cell. Dev. Biol.-Plant. 1999;35(3):222–225. https:// doi.org/10.1007/s11627-999-0082-1
12. Brooks G.T. Chlorinated Insecticides: Technology and Application. V. 1. CRC Press; 2017. 249 p. https://doi.org/10.1201/9781315150390
13. Tanaka R., Kamei I., Cai Z., Nakayama Y., Shiono T. Ethylene-Propylene Copolymerization Behavior of ansa-Dimethylsilylene(fluorenyl)(amido)dimetyltitanium Complex: Application to Ethylene-Propylene-Diene or Ethylene-Propylene-Norbornene Terpolymers. J. Polym. Sci. Part A: Polym. Chem. 2015;53(5):685–691. https://doi.org/10.1002/pola.27494
14. Kasyan L.I. Epoxidation of substituted norbornenes. Stereochemical aspects and accompanying intramolecular transformations. Russ. Chem. Rev. 1998;67(4):263–278. https://doi.org/10.1070/RC1998v067n04ABEH000355
15. Finkelshtein E.Sh., et al. Substituted polynorbornenes as promising materials for gas separation membranes. Russ. Chem. Rev. 2011;80(4):341–361. https://doi.org/10.1070/RC2011v080n04ABEH004203
16. Fonseca L.R., Silva Sa J.L., Carvalho V.P., Lima-Neto B.S. Cross-link in norbornadiene-based polymers from ring-opening metathesis polymerization with pyrrolidinebased Ru complex. Polym. Bull. 2018;75(8):3705–3721. https://doi.org/10.1007/s00289-017-2236-3
17. Ono Y., Kawashima N., Kudo H., Nishikubo T., Nagai T. Synthesis of new photoresponsive polyesters containing norbornadiene moieties by the ring-opening copolymerization of donor-acceptor norbornadiene dicarboxylic acid anhydride with donor-acceptor norbornadiene dicarboxylic acid monoglycidyl ester derivatives. J. Polym. Sci. Part A: Polym.Chem. 2005;43(19):4412–4421. https://doi.org/10.1002/pola.20911
18. Tsubata A., Uchiyama T., Kameyama A., Nishikubo T. Synthesis of Poly(ester-amide)s Containing Norbornadiene (NBD) Residues by the Polyaddition of NBD Dicarboxylic Acid Derivatives with Bis(epoxide)s and Their Photochemical Properties. Macromolecules. 1997;30(19):5649–5654. https://doi.org/10.1021/ma970431a
19. Yalcinkaya E.E., Balcan M., Güler C. Synthesis, characterization and dielectric properties of polynorbornadiene-clay nanocomposites by ROMP using intercalated Ruthenium catalyst. Mater. Chem. Phys. 2013;143(1):380–386. https://doi.org/10.1016/j.matchemphys.2013.09.014
20. Alentiev D.A., Bermeshev M.V. Design and Synthesis of Porous Organic Polymeric Materials from Norbornene Derivatives. Polym. Rev. 2022;62(2):400–437. https://doi.org/10.1080/15583724.2021.1933026
21. Alentiev D.A., Dzhaparidze D.M., Gavrilova N.N., Shantarovich V.P., Kiseleva E.V., Topchiy M.A., et al. Microporous Materials Based on Norbornadiene-Based Cross-Linked Polymers. Polymers. 2018;10(12):1382. https://doi.org/10.3390/polym10121382
22. Aladyshev A.M., Klyamkina A.N., Nedorezova P.M., Kiseleva E.V. Synthesis of Ethylene-Propylene-Diene Terpolymers and Their Heterophase Compositions with Polypropylene in the Presence of Metallocene Catalytic Systems. Russ. J. Phys. Chem. B. 2020;14(4):691–696. https://doi.org/10.1134/S1990793120040028
23. Sveinbjornsson B.R., Weitekamp R.A., Miyake G.M., Xia Y., Atwater H.A., Grubbs R.H. Rapid self-assembly of brush block copolymers to photonic crystals. Proceedings of the National Academy of Sciences (PNAS). 2012;109(36):14332–14336. https://doi.org/10.1073/pnas.1213055109
24. Grubbs R.H., Miyake G.M., Weitekamp R., Piunova V. Chiral polymers for the self-assembly of photonic crystals: Pat. US9575212-B2. Publ. 21.02.2017.
25. Wang Z., Chan C.L.C., Zhao T.H., Parker R.M., Vignolini S. Recent Advances in Block Copolymer Self-Assembly for the Fabrication of Photonic Films and Pigments. Adv. Optical Mater. 2021;9(21):2100519. https://doi.org/10.1002/adom.202100519
26. Kudo H., Yamamoto M., Nishikubo T., Moriya O. Novel Materials for Large Change in Refractive Index: Synthesis and Photochemical Reaction of the Ladderlike Poly(silsesquioxane) Containing Norbornadiene, Azobenzene, and Anthracene Groups in the Side Chains. Macromolecules. 2006;39(5):1759–1765. https://doi.org/10.1021/ma052147m
27. Kato Y., Muta H., Takahashi S., Horie K., Nagai T. Large Photoinduced Refractive Index Change of Polymer Films Containing and Bearing Norbornadiene Groups and Its Application to Submicron-Scale Refractive-Index Patterning. Polym J. 2001;33(11):868–873. https://doi.org/10.1295/polymj.33.868
28. Philippopoulos C., Economou D., Economou C., Marangozis J. Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy. Ind. Eng. Chem. Prod. Res. Dev. 1983;22(4):627–633. https://doi.org/10.1021/i300012a021
29. Bren’ V.A., et al. Norbornadiene–quadricyclane — an effective molecular system for the storage of solar energy. Russ. Chem. Rev. 1991;60(5):451–469. https://doi.org/10.1070/RC1991v060n05ABEH001088
30. Dubonosov A.D., et al. Norbornadiene–quadricyclane as an abiotic system for the storage of solar energy. Russ. Chem. Rev. 2002;71(11):917–927. https://doi.org/10.1070/RC2002v-071n11ABEH000745
31. Jevric M., Petersen A.U., Manso M., Singh S.K., Wang Z., Dreos A., et al. Norbornadiene-Based Photoswitches with Exceptional Combination of Solar Spectrum Match and Long-Term Energy Storage. Chem. Eur. J. 2018;24(49):12767–12772. https://doi.org/10.1002/chem.201802932
32. Manso M., Petersen A.U., Wang Z., Erhart P., Nielsen M.B., Moth-Poulsen K. Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times. Nat. Commun. 2018;9(1):1945. https://doi.org/10.1038/s41467-018-04230-8
33. Wang Z., Roffey A., Losantos R., Lennartson A., Jevric M., Petersen A.U., et al. Macroscopic heat release in a molecular solar thermal energy storage system. Energy Environ. Sci. 2019;12(1):187–193. https://doi.org/10.1039/C8EE01011K
34. Dreos A., Wang Z., Udmark J., Ström A., Erhart P., Börjesson K., et al. Liquid Norbornadiene Photoswitches for Solar Energy Storage. Adv. Energy Mater. 2018;8(18):1703401. https://doi.org/10.1002/aenm.201703401
35. Bol’shakov G.F. Khimiya i tekhnologiya komponentov zhidkogo raketnogo topliva (Chemistry and technology of liquid propellant components). Leningrad: Khimiya; 1983. 318 p. (in Russ.).
36. Norton R.V., Fisher D.H., Graham G.M., Frank P.J. Method for preparing high density liquid hydrocarbon fuels: Pat. US-4355194-A. Publ. 19.10.1982.
37. Burns L.D. Motor fuel: Pat. US-4387257-A. Publ. 07.06.1983.
38. Lun P., Qiang D., Xiutianfeng E., Genkuo N., Xiangwen Z., Jijun Z. Synthesis Chemistry of High- Density Fuels for Aviation and Aerospace Propulsion. Prog. Chem. 2015;27(11):1531–1541. https://doi.org/10.7536/PC150531
39. Kim J., Shim B., Lee G., Han J., Jeon J.-K. Synthesis of High-energy-density Fuel through Dimerization of Bicyclo[2.2.1]hepta-2,5-diene over Co/HY Catalyst. Appl. Chem. Eng. 2018;29(2):185–190. https://doi.org/10.14478/ace.2017.1116
40. Norton R.V., Fisher D.H. High density fuel compositions: Pat. US-4286109-A. Publ. 25.08.1981.
41. Kim J., Shim B., Lee G., Han J., Kim J.M., Jeon J.-K. Synthesis of high-energy-density fuel over mesoporous aluminosilicate catalysts. Catal. Today. 2018;303:71–76. https://doi.org/10.1016/j.cattod.2017.08.024
42. Burdette G.W. Liquid hydrocarbon air breather fuel: Pat. US-441074-A. Publ. 18.10.1983.
43. Zou J.-J., Zhang X., Pan L. High-Energy-Density Fuels for Advanced Propulsion: Design and Synthesis. 1st ed. Wiley-VCH; 2020. 512 p.
44. Zhang C., Zhang X., Zou J., Li G. Catalytic dimerization of norbornadiene and norbornene into hydrocarbons with multiple bridge rings for potential highdensity fuels. Coord. Chem. Rev. 2021;436:213779. https://doi.org/10.1016/j.ccr.2021.213779
45. Zarezin D.P., Rudakova M.A., Shorunov S.V., Sultanova M.U., Samoilov V.O., Maximov A.L., et al. Design and preparation of liquid polycyclic norbornanes as potential high performance fuels for aerospace propulsion. Fuel Processing Technology. 2022;225(3):107056. https://doi.org/10.1016/j.fuproc.2021.107056
46. Shi C., Xu J., Pan L., Zhang X., Zou J.-J. Perspective on synthesis of high-energy-density fuels: From petroleum to coal-based pathway. Chin. J. Chem. Eng. 2021;35(3):83–91. https://doi.org/10.1016/j.cjche.2021.05.004
47. Zhang X., Pan L., Wang L., Zou J.-J. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids. Chem. Eng. Sci. 2018;180:95–125. https://doi.org/10.1016/j.ces.2017.11.044
48. Smagin V.M., Ioffe A.E., Grigor’ev A.A., Strel’chik B.S., Ermolaeva E.M., Sirotina I.G. Preparation of norbornadiene, an important intermediate in organic synthesis. Khimicheskaya promyshlennost’ = Industry & Chemistry. 1983;4:198–201 (in Russ.).
49. Strel’chik B.S., Smagin V.M., Chernykh S.P., Temkin O.N., Stychinskii G.F., Belen’kii V.M. Norbornadiene preparation method: RF Pat. RU2228324C1. Publ. 10.05.2004. (in Russ.).
50. Iaccino L.L., Lemoine R.O.V. Processes and systems for converting hydrocarbons to cyclopentadiene: Pat. WO2017078892A1. Publ. 11.05.2017.
51. Akhmed’yanova R.A., Miloslavskii D.G. Obtaining cyclopentadiene-1,3 from pyrolysis fractions containing dicyclopentadiene. Vestnik tekhnologicheskogo universiteta = Bulletin of the Technological University. 2016;19(23):33–34 (in Russ.).
52. Liakumovich A.G., Sedova S.N., Deev A.V., Magsumov I.A., Erkhov A.V., Cherezova E.N. Study of features of a stage of dicyclopentadiene rectification in a mix of industrial streams of petrochemical and cokechemical raw materials at its excretion. Neftepererabotka i neftekhimiya. Nauchno-tekhnicheskie dostizheniya i peredovoi opyt = Oil Processing and Petrochemistry. 2010;(12):30–33 (in Russ.).
53. Muldoon J.A., Harvey B.G. Bio-Based Cycloalkanes: The Missing Link to High-Performance Sustainable Jet Fuels. ChemSusChem. 2020;13(22):5777–5807. https://doi.org/10.1002/cssc.202001641
54. Harvey B.G. Cyclopentadiene fuels: Pat. US-11078139-B1. 2021.
55. Durakov S.A., Shamsiev R.S., Flid V.R., Gekhman A.E. Hydride transfer mechanism in the catalytic allylation of norbornadiene with allyl formate. Russ. Chem. Bull. 2018;67(12):2234–2240. https://doi.org/10.1007/s11172-018-2361-7
56. Durakov S.A., Shamsiev R.S., Flid V.R., Gekhman A.E. Isotope Effect in Catalytic Hydroallylation of Norbornadiene by Allyl Formate. Kinet. Catal. 2019;60(3):245–249. https://doi.org/10.1134/S0023158419030042
57. Durakov S.A., Melnikov P.V., Martsinkevich E.M., Smirnova A.A., Shamsiev R.S., Flid V.R. Solvent effect in palladium-catalyzed allylation of norbornadiene. Russ. Chem. Bull. 2021;70(1):113–121. https://doi.org/10.1007/s11172-021-3064-z
58. Efros I.E., Dmitriev D.V., Flid V.R. Catalytic Syntheses of Polycyclic Compounds Based on Norbornadiene in the Presence of Nickel Catalysts. Kinet. Catal. 2010;51(3):370–374. https://doi.org/10.1134/S0023158410030079
59. García-López J.A., Frutos-Pedreño R., Bautista D., Saura-Llamas I., Vicente J. Norbornadiene as a Building Block for the Synthesis of Linked Benzazocinones and Benzazocinium Salts through Tetranuclear Carbopalladated Intermediates. Organometallics. 2017;36(2):372–383. https://doi.org/10.1021/acs.organomet.6b00795
60. Egiazaryan K.Т., Shamsiev R.S., Flid V.R. Quantum chemical investigation of the oxidative addition reaction of allyl carboxylates to Ni(0) and Pd(0) complexes. Fine Chem. Technol. 2019;14(6):56–65. https://doi.org/10.32362/2410-6593-2019-14-6-56-65
61. Shamsiev R.S., Flid V.R. Quantum chemical study of the mechanism of catalytic [2+2+2] cycloaddition of acrylic acid esters to norbornadiene in the presence of nickel(0) complexes. Russ. Chem. Bull. 2013;62(11):2301–2305. https://doi.org/10.1007/s11172-013-0333-5
62. Shamsiev R.S., Drobyshev A.V., Flid V.R. Quantum-chemical study on the mechanism of catalytic dimerization of norbornadiene in the presence of hydride nickel(I) complex. Russ. J. Organ. Chem. 2013;49(3):345–349. https://doi.org/10.1134/S1070428013030056
63. Siadati S.A., Nami N., Zardoost M.R. A DFT Study of Solvent Effects on the Cycloaddition of Norbornadiene and 3,4–Dihydroisoquinoline-N-Oxide. Progress in Reaction Kinetics and Mechanism. 2011;36(3):252–258. https://doi.org/10.3184/146867811X13095326582455
64. Kuisma M.J., Lundin A.M., Moth-Poulsen K., Hyldgaard P., Erhart P. Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar Thermal Storage. J. Phys. Chem. C. 2016;120(7):3635–3645. https://doi.org/10.1021/acs.jpcc.5b11489
65. Atta-Kumi J., Pipim G.B., Tia R., Adei E. Investigating the site-, regio-, and stereo-selectivities of the reactions between organic azide and 7-heteronorbornadiene: a DFT mechanistic study. J. Mol. Model. 2021;27(9):248. https://doi.org/10.1007/s00894-021-04857-3
66. Friend C.M., Xu B. Heterogeneous Catalysis: A Central Science for a Sustainable Future. Acc. Chem. Res. 2017;50(3):517–521. https://doi.org/10.1021/acs.accounts.6b00510
67. Hübner S., de Vries J.G., Farina V. Why Does Industry Not Use Immobilized Transition Metal Complexes as Catalysts? Adv. Synth. Catal. 2016;358(1):3–25. https://doi.org/10.1002/adsc.201500846
68. Hu X., Yip A.C.K. Heterogeneous Catalysis: Enabling a Sustainable Future. Front. Catal. 2021;1:667675. https://doi.org/10.3389/fctls.2021.667675
69. Vogt C., Weckhuysen B.M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 2022;6(2):89–111. https://doi.org/10.1038/s41570-021-00340-y
70. Dzhemilev U.M., Popod’ko N.R., Kozlova E.V. Metallokompleksnyi kataliz v organicheskom sinteze. Alitsiklicheskie soedineniya ( Metal complex catalysis in organic synthesis. Alicyclic compounds). Moscow: Khimiya; 1999. 647 p. (in Russ.).
71. Fel’dblyum V.Sh. Sintez i primenenie nepredel’nykh tsiklicheskikh uglevodorodov ( Synthesis and application of unsaturated cyclic hydrocarbons). Moscow: Khimiya; 1982. 208 p. (in Russ.).
72. Schrauzer G.N. On Transition Metal-Catalyzed Reactions of Norbornadiene and the Concept of π Complex Multicenter Processes. In: Eley D.D., Pines H., Weisz P.B. (Eds.). Advances in Catalysis. 1968. V. 18. P. 373–396. https://doi.org/10.1016/S0360-0564(08)60431-9
73. Khan R., Chen J., Fan B. Versatile Catalytic Reactions of Norbornadiene Derivatives with Alkynes. Adv. Synth. Catal. 2020;362(8):1564–1601. https://doi.org/10.1002/adsc.201901494
74. Dzhemilev U.M., Khusnutdinov R.I., Tolstikov G.A. Norbornadienes in the Synthesis of Polycyclic Strained Hydrocarbons with Participation of Metal Complex Catalysts. Russ. Chem. Rev. 1987;56(1):65–94. https://doi.org/10.1070/RC1987v056n01ABEH003255
75. Anikin O.V., Kornilov D.A., Nikitina T.V., Kiselev V.D. Variable Activity of Reagents with C=C and N=N Bonds in Cycloaddition Reactions. Russ. J. Phys. Chem. B. 2018;12(4):595–598. https://doi.org/10.1134/S1990793118040176
76. Chen Y., Kiattansakul R., Ma B., Snyder J.K. Transition Metal-Catalyzed [4+2+2] Cycloadditions of Bicyclo[2.2.1]hepta-2,5-dienes (Norbornadienes) and Bicyclo[2.2.2]octa-2,5-dienes. J. Org. Chem. 2001;66(21):6932–6942. https://doi.org/10.1021/jo010268o
77. Bermeshev M.V., Chapala P.P. Addition polymerization of functionalized norbornenes as a powerful tool for assembling molecular moieties of new polymers with versatile properties. Prog. Polym. Sci. 2018;84:1–46. https://doi.org/10.1016/j.progpolymsci.2018.06.003
78. Petrov V.A., Vasil’ev N.V. Synthetic Chemistry of Quadricyclane. Curr. Org. Synthesis. 2006;3(2):215–259. http://doi.org/10.2174/157017906776819204
79. Orrego-Hernández J., Dreos A., Moth-Poulsen K. Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications. Acc. Chem. Res. 2020;53(8):1478–1487. https://doi.org/10.1021/acs.accounts.0c00235
80. Akioka T., Inoue Y., Yanagawa A., Hiyamizu M., Takagi Y., Sugimori A. A comparative study on photocatalytic hydrogen transfer and catalytic hydrogenation of norbornadiene and quadricyclane catalyzed by [Rh6(CO)16]. J. Mol. Catal. A: Chem. 2003;202(1):31–39. https://doi.org/10.1016/S1381-1169(03)00201-2
81. Cuppoletti A., Dinnocenzo J.P., Goodman J.L., Gould I.R. Bond-Coupled Electron Transfer Reactions: Photoisomerization of Norbornadiene to Quadricyclane. J. Phys. Chem. A. 1999;103(51):11253–11256. https://doi.org/10.1021/jp992884i
82. Lahiry S., Haldar C. Use of semiconductor materials as sensitizers in a photochemical energy storage reaction, norbornadiene to quadricyclane. Solar Energy. 1986;37(1):71–73. https://doi.org/10.1016/0038-092X(86)90109-X
83. Ghandi M., Rahimi A., Mashayekhi G. Triplet photosensitization of myrcene and some dienes within zeolite Y through heavy atom effect. J. Photochem. Photobiol. A. 2006;181(1):56–59. https://doi.org/10.1016/j.jphotochem.2005.10.033
84. Gu L., Liu F. Photocatalytic isomerization of norbornadiene over Y zeolites. React. Kinet. Catal. Lett. 2008;95(1):143–151. https://doi.org/10.1007/s11144-008-5326-2
85. Zou J.-J., Zhang M.-Y., Zhu B., Wang L., Zhang X., Mi Z. Isomerization of Norbornadiene to Quadricyclane Using Ti-Containing MCM-41 as Photocatalysts. Catal. Lett. 2008;124(1–2):139–145. https://doi.org/10.1007/s10562-008-9441-5
86. Zou J.-J., Liu Y., Pan L., Wang L., Zhang X. Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and Cr)-incorporated Ti–MCM-41. Appl. Catal. B. 2010;95(3):439–445. https://doi.org/10.1016/j.apcatb.2010.01.024
87. Pan L., Zou J.-J., Zhang X., Wang L. Photoisomerization of Norbornadiene to Quadricyclane Using Transition Metal Doped TiO2. Ind. Eng. Chem. Res. 2010;49(18):8526–8531. https://doi.org/10.1021/ie100841w
88. Zou J.-J., Pan L., Wang li., Zhang X. Photoisomerization of Norbornadiene to Quadricyclane Using Ti-Containing Photocatalysts. In: Saha S. (Ed.). Molecular Photochemistry – Various Aspects. 2012. P. 41–62. https://doi.org/10.5772/26597
89. Hirao K., Yamashita A., Yonemitsu O. Cycloreversion of acylquadricyclane to acylnorbornadiene promoted by metal oxides. Tetrahedron Lett. 1988;29(33):4109–4112. https://doi.org/10.1016/S0040-4039(00)80429-3
90. Koser G.F., Faircloth J.N. Silver(I)-promoted reactions of strained hydrocarbons. Oxidation vs. rearrangement. J. Org. Chem. 1976;41(3):583–585. https://doi.org/10.1021/jo00865a048
91. Ford J.F., Mann C.K., Vickers T.J. Monitoring the Heterogeneously Catalyzed Conversion of Quadricyclane to Norbornadiene by Raman Spectroscopy. Appl. Spectrosc. 1994;48(5):592–595. https://doi.org/10.1366/0003702944924907
92. Manassen J. Catalysis of a symmetry restricted reaction by transition metal complexes. The importance of the ligand. J. Catal. 1970;18(1):38–45. https://doi.org/10.1016/0021-9517(70)90309-X
93. Miki S., Ohno T., Iwasaki H., Yoshida Z. Cobalt(II) tetraphenylporphyrin-catalyzed isomerization of electronegative substituted quadricyclanes. Tetrahedron Lett. 1985;26(29):3487–3490. https://doi.org/10.1016/S0040-4039(00)98671-4
94. Miki S., Maruyama T., Ohno T., Tohma T., Toyama S., Yoshida Z. Alumina-anchored Cobalt(II) Schiff Base Catalyst for the Isomerization of Trimethyldicyanoquadricyclane to the Norbornadiene. Chem. Lett. 1988;17(5):861–864. https://doi.org/10.1246/cl.1988.861
95. Wang Z., Roffey A., Losantos R., Lennartson A., Jevric M., Petersen A.U., et al. Macroscopic heat release in a molecular solar thermal energy storage system. Energy Environ. Sci. 2019;12(1):187–193. https://doi.org/10.1039/C8EE01011K
96. Kuznetsova N.A., Kaliya O.L., Leont’eva S.V., Manulik O.S., Negrimovskii V.M., Flid V.R., Shamsie R.S., Yuzhakova O.A., Yashtulov N.A. Catalyst and method for valence isomerisation of quadricyclane in norbornadiene: RF Pat. RU 2470030 C1. Publ. 20.11.1012. (in Russ.).
97. Flid V.R., Leont’eva S.V., Kaliya O.L., Durakov S.A. Method for carrying out the process of reversible isomerization of norbornadiene in a quadricyclean: RF Pat. RU 2618527 C1. Publ. 04.05.2017]. (in Russ.).
98. Roduner E. Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006;35(7):583–592. https://doi.org/10.1039/B502142C
99. Pujari S.P., Scheres L., Marcelis A.T.M., Zuilhof H. Covalent surface modification of oxide surfaces. Angew. Chem. Int. Ed. Engl. 2014;53(25):6322–6356. https://doi.org/10.1002/anie.201306709
100. Luchs T., Lorenz P., Hirsch A. Efficient Cyclization of the Norbornadiene‐Quadricyclane Interconversion Mediated by a Magnetic [Fe3O4−CoSalphen] Nanoparticle Catalyst. ChemPhotoChem. 2020;4(1):52–58. https://doi.org/10.1002/cptc.201900194
101. Lorenz P., Luchs T., Hirsch A. Molecular Solar Thermal Batteries through Combination of Magnetic Nanoparticle Catalysts and Tailored Norbornadiene Photoswitches. Chem. Eur. J. 2021;27(15):4993–5002. https://doi.org/10.1002/chem.202005427
102. Suld G., Schneider A., Myers Jr H.K.M. Catalytic dimerization of norbornadiene to Binor-S: Pat. US-4031150-A. Publ. 21.06.1977.
103. Warrener R.N., Butler D.N., Golic M. The synthesis of geometric variants of rigidly-linked uracil-{spacer}-uracil and uracil-{spacer}-effector molecules using block assembly methods. Nucleosides Nucleotides. 1999;18(11–12):2631–2660. https://doi.org/10.1080/07328319908044631
104. Alentiev D.A., Dzhaparidze D.M., Bermeshev M.V., Starannikova L.E., Filatova M.P., Yampolskii Y.P., et al. Addition Copolymerization of Silicon-Containing Tricyclononene with 2,5-Norbornadiene Dimer. Polym. Sci. Ser. B. 2019;61(6):812–816. https://doi.org/10.1134/S1560090419060022
105. Rosenkoetter K.E., Garrison M.D., Quintana R.L., Harvey B.G. Synthesis and Characterization of a High-Temperature Thermoset Network Derived from a Multicyclic Cage Compound Functionalized with Exocyclic Allylidene Groups. ACS Appl. Polym. Mater. 2019;1(10):2627–2637. https://doi.org/10.1021/acsapm.9b00542
106. Solomatin D.V., Kuznetsova O.P., Zvereva U.G., Rochev V.Ya., Bekeshev V.G., Prut E.V. Mechanism of formation of fine rubber powder from ternary ethylene–propylene–diene vulcanizates. Russ. J. Phys. Chem. B. 2016; 10(4): 662–671. https://doi.org/10.1134/S1990793116040102
107. Kettles T., Tam W. Bicyclo[2.2.1] hepta-2,5-diene (Norbornadiene). In: e-EROS Encyclopedia of Reagents for Organic Synthesis. 2012. https://doi.org/10.1002/047084289X.rn01411
108. Mrowca J.J., Katz T.J. Catalysis of a Cycloaddition Reaction by Rhodium on Carbon. J. Am. Chem. Soc. 1966;88(17):4012–4015. https://doi.org/10.1021/ja00969a021
109. Chung H.S., Chen C.S.H., Kremer R.A., Boulton J.R., Burdette G.W. Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels. Energy Fuels. 1999;13(3):641–649. https://doi.org/10.1021/ef980195k
110. Gol’dshleger N.F., Azbel’ B.I., Isakov Ya.I., Shpiro E.S., Minachev Kh.M. Cyclodimerization of bicyclo[2.2.1]hepta-2,5-diene in the presence of rhodiumcontaining zeolite catalysts. Russ. Chem. Bull. 1994;43(11):1802–1808. https://doi.org/10.1007/BF00696305
111. Azbel’ B.I., Gol’Dshleger N.F., Khidekel’ M.L., Sokol V.I., Porai-Koshits M.A. Cyclodimerization of bicyclo [2.2.1]hepta-2,5-diene by rhodium carboxylates. J. Molecul. Catal. 1987;40(1):57–63. https://doi.org/10.1016/0304-5102(87)80006-8
112. Yuffa A.Y., Lisichkin G.V. Heterogeneous Metal Complex Catalysts. Russ. Chem. Rev. 1978;47(8): 751–766. https://doi.org/10.1070/RC1978v047n08ABEH002258
113. Flid V.R., Ivanov A.V., Manulik O.S., Belov A.P. Heterogeneous catalytic dimerization of bicyclo[2.2.1] heptadiene. Kinetika i kataliz = Kinetics and Catalysis. 1994;35(5):774–775 (in Russ.).
114. Leont’eva S.V., Dmitriev D.V., Katsman E.A., Flid V.R. Catalytic syntheses of polycyclic compounds based on norbornadiene in the presence of nickel complexes: V. Codimerization of norbornadiene and methyl vinyl ketone on heterogenized nickel catalysts. Kinet. Catal. 2006;47(4):580–584. https://doi.org/10.1134/S0023158406040148
115. Li C., Zhang C., Liu R., Wang L., Zhang X., Li G. Heterogeneously supported active Pd(0) complex on silica mediated by PEG as efficient dimerization catalyst for the production of high energy density fuel. Mol. Catal. 2022;520:112170. https://doi.org/10.1016/j.mcat.2022.112170
116. Jeong B.H., Han J.S., Jeon J.K., Park E.S., Jeong K.H. Method for Producing Norbornadiene Dimer Using Hetorogneous Catalyst: Pat. KR101616071B1. Publ. 27.04.2016.
117. Jeong K., Kim J., Han J., Jeong B., Jeon J.K. Dimerization of Bicyclo[2.2.1.]hepta-2,5-diene Over Various Zeolite Catalysts. Top. Catal. 2017;60(9–11):743–749. https://doi.org/10.1007/s11244-017-0780-6
118. Kim J., Shim B., Lee G., Han J., Jeon J.-K. Synthesis of High-energy-density Fuel through Dimerization of Bicyclo[2.2.1]hepta-2,5-diene over Co/HY Catalyst. Appl. Chem. Eng. 2018;29(2):185–190. https://doi.org/10.14478/ACE.2017.1116
119. Kim J., Shim B., Lee G., Han J., Kim J.M., Jeon J.-K. Synthesis of high-energy-density fuel over mesoporous aluminosilicate catalysts. Catalysis Today. 2018;303:71–76. https://doi.org/10.1016/j.cattod.2017.08.024
120. Jeong K., Kim J., Han J., Jeon J.-K. Synthesis of High-Energy-Density Fuel Through the Dimerization of Bicyclo[2.2.1]Hepta-2,5-Diene Over a Nanoporous Catalyst. J. Nanosci. Nanotechnol. 2017;17(11):8255–8259. https://doi.org/10.1166/jnn.2017.15097
121. Khan N., Abhyankar A.C., Nandi T. Cyclodimerization of norbornadiene (NBD) into high energy-density fuel pentacyclotetradecane (PCTD) over mesoporous silica supported Co–Ni nanocatalyst. J. Chem. Sci. 2021;133(1):29. https://doi.org/10.1007/s12039-021-01890-w
122. Wu M.M., Xiong Y. Process for the catalytic cyclodimerization of cyclic olefins: Pat. US5545790A. Publ. 13.08.1996.
123. Audeh C.A., Boulton J.R., Kremer R.A., Xiong Y. Heterogeneous catalytic oligomerization of norbornene: Pat. US5461181A. Publ. 24.10.1995.
124. Dzhemilev U.M., Kutepov B.I., Grigor’eva N.G., Bubennov S.V., Tselyutina M.I., Gizetdinova A.F. Method of selective obtaining norbornene dimers: RF Pat. RU2505514C1. Publ. 27.01. 2014. (in Russ.).
125. Grigor’eva N.G., Bubennov S.V., Khalilov L.M., Kutepov B.I. Dimerization of norbornene on zeolite catalysts. Chinese J. Catal. 2015;36(3):268–273. https://doi.org/10.1016/S1872-2067(14)60251-5
126. Bubennov S.V., Grigor’eva N.G., Serebrennikov D.V., Agliullin M.R., Kutepov B.I. Oligomerization of Unsaturated Compounds in the Presence of Amorphous Mesoporous Aluminosilicates. Pet. Chem. 2019;59(7):682–690. https://doi.org/10.1134/S096554411907003X
127. Chen Y., Shi C., Jia T., Cai Q., Pan L., Xie J., et al. Catalytic synthesis of high-energy–density jet-fuel-range polycyclic fuel by dimerization reaction. Fuel. 2022;308:122077. https://doi.org/10.1016/j.fuel.2021.122077
128. Ananikov V.P., Beletskaya I.P. Toward the Ideal Catalyst: From Atomic Centers to a “Cocktail” of Catalysts. Organometallics. 2012;31(5):1595–1604. https://doi.org/10.1021/om201120n
129. Eremin D.B., Ananikov V.P. Understanding active species in catalytic transformations: From molecular catalysis to nanoparticles, leaching, “Cocktails” of catalysts and dynamic systems. Coord. Chem. Rev. 2017;346:2–19. https://doi.org/10.1016/j.ccr.2016.12.021
130. Prima D.O., Kulikovskaya N.S., Galushko A.S., Mironenko R.M., Ananikov V.P. Transition metal ‘cocktail’-type catalysis. Curr. Opin. Green Sustain. Chem. 2021;31:100502. https://doi.org/10.1016/j.cogsc.2021.100502
131. Cantillo D., Kappe C.O. Immobilized Transition Metals as Catalysts for Cross-Couplings in Continuous Flow—A Critical Assessment of the Reaction Mechanism and Metal Leaching. ChemCatChem. 2014;6(12):3286–3305. https://doi.org/10.1002/cctc.201402483
Supplementary files
|
1. Application areas of norbornene and norbornadiene derivatives | |
Subject | ||
Type | Research Instrument | |
View
(185KB)
|
Indexing metadata ▾ |
- Various strategies for the selection of catalysts and prospects for the development of heterogeneous catalysis for syntheses based on norbornene (NBN) and norbornadiene (NBD) derivatives were analyzed.
- The possibility of selective cyclic dimerization and isomerization of NBN and NBD was shown.
- In a number of processes, it is possible not only to maintain the strained carbocyclic framework, but also to establish ways to control regio- and stereo-selectivity.
Review
For citations:
Durakov S.A., Kolobov A.A., Flid V.R. Features of heterogeneous catalytic transformations of strained carbocyclic compounds of the norbornene series. Fine Chemical Technologies. 2022;17(4):275-297. https://doi.org/10.32362/2410-6593-2022-17-4-275-297