Preview

Fine Chemical Technologies

Advanced search

Heterogeneous catalytic reduction of substituted 5-acyl-1,3-dioxanes

https://doi.org/10.32362/2410-6593-2022-17-3-201-209

Full Text:

Abstract

Objectives. To study the hydrogenation of substituted 5-acyl-1,3-dioxanes in the presence of metal-containing catalysts (Pt/Re, Pd/C, Ni/kieselguhr, and Ni/Mo).

Methods. In order to determine the qualitative and quantitative composition of the reaction masses, the following analysis methods were used: gas-liquid chromatography (using the Kristall 2000 hardware complex); mass-spectroscopy (using Chromatec-Kristall 5000M device with NIST 2012); nuclear magnetic resonance (NMR) spectrometry (using Bruker AM-500 device with operating frequencies of 500 and 125 MHz).

Results. Hydrogenation of substituted 5-acyl-1,3-dioxanes obtained by condensation of carbonyl compounds with paraformaldehyde and sulfuric acid was used to synthesize heterocyclic alcohols in the presence of metal-containing catalysts with a conversion of the initial ketones of 60–90% and a formation selectivity of target products of 70–90%. Substances were analyzed and confirmed by gas-liquid chromatography, mass spectrometry and NMR spectroscopy.

Conclusions. The best catalyst for the reduction of substituted 5-acyl-1,3-dioxanes is Pd/C. By using this catalyst, it is possible to achieve a high selectivity for the formation of the corresponding heterocyclic alcohols at a conversion rate of the initial ketones of 60–90%.

About the Authors

A. I. Musin
Institute of Chemical Technology and Engineering, Ufa State Petroleum Technological University, Sterlitamak
Russian Federation

Airat I. Musin, Postgraduate Student, Department of General, Analytical and Applied Chemistry

2, Oktyabrya pr., Sterlitamak, 453118

ResearcherID R-9142-2016,

RSCI SPIN-code 9573-4624



Yu. G. Borisova
Ufa State Petroleum Technological University
Russian Federation

Yulianna G. Borisova, Cand. Sci. (Chem.), Teacher, Department of General, Analytical and Applied Chemistry

1, Kosmonavtov ul., Ufa, 450064

Scopus Author ID 56526865000,

ResearcherID P-9744-2017,

RSCI SPIN-code 3777-0375



G. Z. Raskil’dina
Ufa State Petroleum Technological University
Russian Federation

Gul’nara Z. Raskil’dina, Dr. Sci. (Chem.), Professor, Department of General, Analytical and Applied Chemistry

1, Kosmonavtov ul., Ufa, 450064

Scopus Author ID 56069888400,

ResearcherID F-1619-2017,

RSCI SPIN-code 2183-3333



R. R. Daminev
Ufa State Petroleum Technological University
Russian Federation

Rustem R. Daminev, Dr. Sci. (Eng.), Professor, Director, Institute of Oil & Gas Engineering and Digital Technology

1, Kosmonavtov ul., Ufa, 450064

Scopus Author ID 15026168000,

RSCI SPIN-code 3431-0901

 

 

 



A. R. Davletshin
Ufa State Petroleum Technological University
Russian Federation

Artur R. Davletshin, Dr. Sci. (Eng.), Professor, Department of Oil and Gas Technology

1, Kosmonavtov ul., Ufa, 450064

Scopus Author ID 39261319400,

ResearcherID AGQ-4852-2022,

RSCI SPIN-code 7531-4771



S. S. Zlotskii
Ufa State Petroleum Technological University
Russian Federation

Simon S. Zlotskii, Dr. Sci. (Chem.), Professor, Head of the Department of General, Analytical and Applied Chemistry

1, Kosmonavtov ul., Ufa, 450064

Scopus Author ID 6701508202,

ResearcherID W-6564-2018,

RSCI SPIN-code 6529-3323



References

1. Gafarov N.A., Kushnarenko V.M., Bugai D.E. Ingibitory korrozii: v 2 t. T. 2. Diagnostika i zashchita ot korrozii pod napryazheniem neftegazopromyslovogo oborudovaniya (Corrosion Inhibitors: in 2 v. V. 2. Diagnostics and Protection against Corrosion under Stress of Oil and Gas Equipment). Moscow: Khimiya; 2002. 367 p. (in Russ.).

2. Yakovenko E.A., Baimurzina Yu.L., Raskil’dina G.Z., Zlotskii S.S. Synthesis and herbicidal and antioxidant activity of a series of hetero- and carbocyclic derivatives of monochloroacetic acid. Russ. J. Appl. Chem. 2020;93(5):712–720. https://doi.org/10.1134/S1070427220050122

3. Kuz’mina, U.S., Raskil’dina, G.Z., Ishmetova, D.V., et al. Cytotoxic activity against SH-SY5Y neuroblastoma cells of heterocyclic compounds containing gemdichlorocyclopropane and/or 1,3-dioxacycloalkane fragments. Pharm. Chem. J. 2022;55(12):1293–1298. https://doi.org/10.1007/s11094-022-02574-6 [Original Russian Text: Kuz’mina, U.S., Raskil’dina, G.Z., Ishmetova, D.V., et al. Cytotoxic activity against SH-SY5Y neuroblastoma cells of heterocyclic compounds containing gem-dichlorocyclopropane and/or 1,3-dioxacycloalkane fragments. Khimiko-Farmatsevticheskii Zhurnal. 2022;55(12):27–32 (in Russ.). https://doi.org/10.30906/0023-1134-2021-55-12-27-32 ]

4. Maximov A.L., Nekhaev A.I., Ramazanov D.N. Ethers and acetals, promising petrochemicals from renewable sources. Pet. Chem. 2015;55(1):1–21. https://doi.org/10.1134/S0965544115010107 [Original Russian Text: Maximov A.L., Nekhaev A.I., Ramazanov D.N. Ethers and acetals, promising petrochemicals from renewable sources. Neftekhimiya. 2015;55(1):3–24 (in Russ.). https://doi.org/10.7868/S0028242115010104 ]

5. Samoilov V., Goncharova A., Zarezin D., Kniazeva M., Ladesov A., Maximov A. Bio-based solvents and gasoline components from renewable 2,3-butanediol and 1,2-propanediol: synthesis and characterization. Molecules. 2020; 25(7):1723. https://doi.org/10.3390/molecules25071723

6. Zlotskij S.S., Lesnikova E.T., Rachmankulov D.L., Timpe H.-J. Synthese von 5-Hydroxyalkyl- und 5-Alkenyl1,3-dioxanen. Z. Chem. 1990;30(8):281–282. https://doi.org/10.1002/zfch.19900300804

7. Borisova Y.G., Musin A.I., Yakupov N.V., Daminev R.R., Zlotskii S.S. Pd/C-catalyzed hydrogenation of substituted 5-acyl-1,3-dioxanes. Russ. J. Gen. Chem. 2021;91(9):1619–1622. https://doi.org/10.1134/S1070363221090036

8. Golosman E.Z., Efremov V.N. Industrial catalysts for the carbon oxides hydrogenation. Kataliz v promyshlennosti = Сatalysis in Industry. 2012;(5):36–55 (in Russ.).

9. Oosthuizen R.S., Nyamori V.O. Carbon nanotubes as supports for palladium and bimetallic catalysts for use in hydrogenation reactions. Platinum Metals Rev. 2011;55(3):154–169. https://doi.org/10.1595/147106711X577274

10. Khazipova A.N., Grigor’eva N.G., Korzhova L.F., Kutepov B.I. Hydrogenation of α-methylstyrene linear dimers in the presence of Pd- and Ni-containing catalysts. Russ. J. Appl. Chem. 2009;82(6):1065–1069. https://doi.org/10.1134/S1070427209060251

11. Mironenko R.M., Lavrenov A.V. An essay on the history of catalytic hydrogenation of organic compounds. From P. Sabatier and V.N. Ipatieff to the present days. Kataliz v promyshlennosti = Сatalysis in Industry. 2021;21(4):259–273 (in Russ.). https://doi.org/10.18412/1816-0387-2021-4-259-273

12. Karimov O.Kh. Purification of isoprene from acetylene impurities on the nickel catalyst. Promyshlennoe proizvodstvo i ispol’zovanie elastomerov = Industrial Production and Use Elastomers. 2019;(1):3–5 (in Russ.). https://doi.org/10.24411/2071-8268-2019-10101

13. Belyi A.S., Smolikov M.D., Kir’yanov D.I., Udras I.E. Modern views on the state of platinum in supported catalysts for production of motor fuels. Russ. J. Gen. Chem. 2007;77(12):2243–2254. https://doi.org/10.1134/S1070363207120298 [Original Russian Text: Belyi A.S., Smolikov M.D., Kir’yanov D.I., Udras I.E. Modern views on the state of platinum in supported catalysts for production of motor fuels. Rossiiskii Khimicheskii Zhurnal. 2007;51(4):38–47 (in Russ).]

14. Millan-Agorio M., Ramires T., Bermudes J.M., Puron G., Pinilla J.L. Crude oil refining catalyst and method of producing same: Pat. Application number PCT/RU20 15/000546. Publ. 02.02.2017.

15. Kaluža L. Activity of transition metal sulfides supported on Al2 O3 , TiO2 and ZrO2 in the parallel hydrodesulfurization of 1-benzothiophene and hydrogenation of 1-methyl-cyclohex- -1-ene. React. Kinet. Mech. Cat. 2015;114(2):781–794. https://doi.org/10.1007/s11144-014-0809-9

16. Touchy A.S., Hakim Siddiki S.M., Kon K., Shimizu K. Heterogeneous Pt catalysts for reductive amination of levulinic acid to pyrrolidones. ACS Catalysis. 2014;4(9):3045–3050. https://doi.org/10.1021/CS500757K

17. Sharova E.S., Faleev S.A., Ivanchina E.D., Gingazova M.S., Poluboyartsev D.S., Kravtsov A.V. Dynamics of properties of Pt-reforming catalysts in industrial operation. Kataliz v promyshlennosti = Сatalysis in Industry. 2013;(3):48–53 (in Russ).

18. Mao Z., Gu H., Lin X. Recent advances of Pd/C-catalyzed reactions. Catalysts. 2021;11(9):1078. https://doi.org/10.3390/catal11091078

19. Du R., Zhu C., Zhang P., Fan R. Selective hydrogenation of aromatic aminoketones by Pd/C сatalysis. Synthetic Communications. 2008;38(17):2889–2897. https://doi.org/10.1080/00397910801993719


Supplementary files

1. Hydrogenation of 5-acyl-1,3-dioxanes
Subject
Type Исследовательские инструменты
View (99KB)    
Indexing metadata
  • The heterogeneous Pd/C catalyst allows reducing 5-acyl-1,3-dioxanes 1–5 to the properties of alcohols 6–10 with a selectivity of more than 95%. Catalysts containing Ni are substantially less active in this process.

Review

For citations:


Musin A.I., Borisova Yu.G., Raskil’dina G.Z., Daminev R.R., Davletshin A.R., Zlotskii S.S. Heterogeneous catalytic reduction of substituted 5-acyl-1,3-dioxanes. Fine Chemical Technologies. 2022;17(3):201-209. https://doi.org/10.32362/2410-6593-2022-17-3-201-209

Views: 435


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)