Investigation of the anti-influenza activity of siRNA complexes against the cellular genes FLT4, Nup98, and Nup205 in vitro














https://doi.org/10.32362/2410-6593-2022-17-2-140-151
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Full Text:
Abstract
Objectives. Evaluation of changes in the viral activity of influenza A/WSN/33 after complex knockdown of combinations of cellular genes FLT4, Nup98 and Nup205 in human lung cell culture A549.
Methods. The work was carried out using the equipment of the Center for Collective Use of the I. Mechnikov Research Institute of Vaccines and Sera, Russia. The authors performed transfection of combinations of small interfering ribonucleic acid (siRNA) complexes that cause simultaneous disruption of the expression of cellular genes FLT4, Nup98, and Nup205. Within three days from the moment of transfection and infection, the supernatant fluid and cell lysate were taken for subsequent viral reproduction intensity determination using the titration method for cytopathic action. The dynamics of changes in the concentration of viral ribonucleic acid (vRNA) was determined by real-time reverse transcription polymerase chain reaction (real-time RT-PCR). The nonparametric Mann–Whitney test was used to calculate statistically significant differences between groups.
Results. Using all of the combinations of siRNA complexes, cell viability did not decrease below the threshold level of 70%. In cells treated with complex FLT4.2 + Nup98.1 + Nup205 at the multiplicity of infection (MOI) equal to 0.1, a significant decrease in viral reproduction by 1.5 lg was noted on the first day in relation to nonspecific and viral controls. The use of siRNA complexes at MOI 0.01 resulted in a more pronounced antiviral effect. The viral titer in cells treated with siRNA complexes FLT4.2 + Nup98.1 and Nup98.1 + Nup205 decreased by 1.5 lg on the first day. In cells treated with complexes FLT4.2 + Nup205 and FLT4.2 + Nup98.1 + Nup205, it decreased by 1.8 and 2.0 lg on the first day and by 1.8 and 2.5 lg on the second day, respectively, in relation to nonspecific and viral controls. When conducting real-time RT-PCR, a significant decrease in the concentration of vRNA was noted. At MOI 0.1, a 295, 55, and 63-fold decrease in the viral load was observed with the use of siRNA complexes FLT4.2 + Nup98.1, Nup98.1 + Nup205, and FLT4.2 + Nup98.1 + Nup205, respectively. On the second day, a decrease in vRNA was also observed in cells treated with complex A. A 415-fold decrease in vRNA on the third day was noted in cells treated with complex FLT4.2 + Nup205. At MOI 0.01, the concentration of vRNA decreased 9.5 times when using complex B relative to nonspecific and viral control.
Conclusions. The study showed a pronounced antiviral effect of siRNA combinations while simultaneously suppressing the activity of cellular genes (FLT4, Nup98, and Nup205), whose expression products are playing important role in the viral reproduction process, and obtained original designs of siRNA complexes. The results obtained are of great importance for the creation of emergence prophylactic and therapeutic drugs, whose action is based on the mechanism of RNA interference.
Keywords
About the Authors
E. A. PashkovRussian Federation
Evgeny A. Pashkov, Postgraduate Student, Department of Microbiology, Virology and Immunology; Junior Researcher, Laboratory of Molecular Immunology
8, Trubetskaya ul., Moscow, 119991; 5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no conflicts of interest
M. O. Korotysheva
Russian Federation
Maria O. Korotysheva, Student, International School «Medicine of the Future»
8, Trubetskaya ul., Moscow
Competing Interests:
The authors declare no conflicts of interest
A. V. Pak
Russian Federation
Anastasia V. Pak, Student, Institute of Clinical Medicine
8, Trubetskaya ul., Moscow
Competing Interests:
The authors declare no conflicts of interest
E. B. Faizuloev
Russian Federation
Evgeny B. Faizuloev, Cand. Sci. (Biol.), Head of the Laboratory of Molecular Virology
5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no conflicts of interest
A. V. Sidorov
Russian Federation
Alexander V. Sidorov, Cand. Sci. (Biol.), Head of the Laboratory of DNA viruses
5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no conflicts of interest
A. V. Poddubikov
Russian Federation
Alexander A. Poddubikov, Cand. Sci. (Biol.), Head of the Laboratory of Microbiology of Opportunistic Pathogenic Bacteria
5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no conflicts of interest
E. P. Bystritskaya
Russian Federation
Elizaveta P. Bystritskaya, Junior Researcher, Laboratory of Molecular Immunology
5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no conflicts of interest
Yu. E. Dronina
Russian Federation
Yuliya E. Dronina, Cand. Sci. (Med.), Associate Professor, Department of Microbiology, Virology and Immunology; Senior Researcher, Laboratory of Legionellosis
8, Trubetskaya ul., Moscow, 119991; 18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest
V. K. Solntseva
Russian Federation
Viktoriia K. Solntseva, Cand. Sci. (Med.), Senior Lecturer, A.A. Vorobiev Department of Microbiology, Virology and Immunology
8, Trubetskaya ul., Moscow, 119991
Competing Interests:
The authors declare no conflicts of interest
T. A. Zaiceva
Russian Federation
Tatyana A. Zaiceva, Cand. Sci. (Med.), Senior Lecturer, A.A. Vorobiev Department of Microbiology, Virology and Immunology
8, Trubetskaya ul., Moscow, 119991
Competing Interests:
The authors declare no conflicts of interest
E. P. Pashkov
Russian Federation
Evgeny P. Pashkov, Dr. Sci. (Med.), Professor, A.A. Vorobiev Department of Microbiology, Virology and Immunology
8, Trubetskaya ul., Moscow, 119991
Competing Interests:
The authors declare no conflicts of interest
A. S. Bykov
Russian Federation
Anatoly S. Bykov, Dr. Sci. (Med.), Professor, Department of Virology and Immunology
8, Trubetskaya ul., Moscow, 119991
Competing Interests:
The authors declare no conflicts of interest
O. A. Svitich
Russian Federation
Oxana A. Svitich, Corresponding Member of the Russian Academy of Sciences, Dr. Sci. (Med.), Head of the Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», Head of the Laboratory of Molecular Immunology; Professor, Department of Microbiolody, Virology and Immunology
8, Trubetskaya ul., Moscow, 119991; 5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no conflicts of interest
V. V. Zverev
Russian Federation
Vitaliy V. Zverev, Full Member of the Russian Academy of Sciences, Dr. Sci. (Biol.), Scientific Director; Head of the Department of Microbiolody, Virology and Immunology
8, Trubetskaya ul., Moscow, 119991; 5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no conflicts of interest
References
1. Peteranderl C., Herold S., Schmoldt C. Human Influenza Virus Infections. Semin. Respir. Crit. Care Med. 2016;37(4):487-500. https://doi.org/10.1055/s-0036-1584801
2. Sellers S.A., Hagan R.S., Hayden F.G., Fischer W.A. 2nd. The hidden burden of influenza: A review of the extrapulmonary complications of influenza infection. Influenza Other Respir. Viruses. 2017;11(5):372-393. https://doi.org/10.1111/irv.12470
3. Koehler P., Bassetti M., Kochanek M., Shimabukuro-Vornhagen A., Cornely O.A. Intensive care management of influenza-associated pulmonary aspergillosis. Clin. Microbiol. Infect. 2019;25(12):1501-1509. https://doi.org/10.1016/j.cmi.2019.04.031
4. Radzišauskienė D., Vitkauskaitė M., Žvinytė K., Mameniškienė R. Neurological complications of pandemic A(H1N1)2009pdm, postpandemic A(H1N1)v, and seasonal influenza A. Brain Behav. 2021;11(1):e01916. https://doi.org/10.1002/brb3.1916
5. Kalil A.C., Thomas P.G. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit. Care. 2019;23(1):258. https://doi.org/10.1186/s13054-019-2539-x
6. Webby R.J., Webster R.G. Emergence of influenza A viruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001;356(1416):1817-1828. https://doi.org/10.1098/rstb.2001.0997
7. Kirby B.J., Symonds W.T., Kearney B.P., Mathias A.A. Pharmacokinetic, Pharmacodynamic, and Drug-Interaction Profile of the Hepatitis C Virus NS5B Polymerase Inhibitor Sofosbuvir. Clin. Pharmacokinet. 2015;54(7):677-690. https://doi.org/10.1007/s40262-015-0261-7
8. Gentile I., Buonomo A.R., Borgia G. Dasabuvir: A Non-Nucleoside Inhibitor of NS5B for the Treatment of Hepatitis C Virus Infection. Rev. Recent Clin. Trials. 2014;9(2):115-123. https://doi.org/10.2174/1574887109666140529222602
9. Magro P., Zanella I., Pescarolo M., Castelli F., Quiros-Roldan E. Lopinavir/ritonavir: Repurposing an old drug for HIV infection in COVID-19 treatment. Biomed. J. 2021;44(1):43-53. https://doi.org/10.1016/j.bj.2020.11.005
10. Han J., Perez J., Schafer A., Cheng H., Peet N., Rong L., Manicassamy B. Influenza Virus: Small Molecule Therapeutics and Mechanisms of Antiviral Resistance. Curr. Med. Chem. 2018;25(38):5115-5127. https://doi.org/10.2174/0929867324666170920165926
11. Castle S.C. Clinical relevance of age-related immune dysfunction. Clin. Infect. Dis. 2000;31(2):578-585. https://doi.org/10.1086/313947
12. Looi Q.H., Foo J.B., Lim M.T., Le C.F., Show P.L. How far have we reached in development of effective influenza vaccine? Int. Rev. Immunol. 2018;37(5):266-276. https://doi.org/10.1080/08830185.2018.1500570
13. Pleguezuelos O., James E., Fernandez A., Lopes V., Rosas L.A., Cervantes-Medina A., Cleath J., Edwards K., Neitzey D., Gu W, Hunsberger S., Taubenberger J.K., Stoloff G., Memoli M.J. Efficacy of FLU-v, a broad-spectrum influenza vaccine, in a randomized phase IIb human influenza challenge study. npj Vaccines. 2020;5(1):22. https://doi.org/10.1038/s41541-020-0174-9
14. Wang F., Chen G., Zhao Y. Biomimetic nanoparticles as universal influenza vaccine. Smart Mater. Med. 2020;1:21-23. https://doi.org/10.1016/j.smaim.2020.03.001
15. Smith M. Vaccine safety: medical contraindications, myths, and risk communication. Pediatr. Rev. 2015;36(6):227-238. https://doi.org/10.1542/pir.36.6.227
16. McManus M.T., Sharp P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 2002;3(10):737-747. https://doi.org/10.1038/nrg908
17. Pashkov E.A., Faizuloev E.B., Svitich O.A., Sergeev O.V., Zverev V.V. The potential of synthetic small interfering RNA-based antiviral drugs for influenza treatment. Voprosy Virusologii = Problems of Virology. 2020;65(4):182-190 (in Russ.). https://doi.org/10.36233/0507-4088-2020-65-4-182-190
18. Adams D., Suhr O.B. Patisiran, an investigational RNAi therapeutic for patients with hereditary transthyretinmediated (hATTR) amyloidosis: Results from the phase 3 APOLLO study. Revue Neurologique. 2018;174(S1):S37. https://doi.org/10.1016/j.neurol.2018.01.085
19. Zhao L., Wang X., Zhang X., Liu X., Zhang Y., Zhang S. Therapeutic strategies for acute intermittent porphyria. Intractable & Rare Diseases Research. 2020;9(4):205-216. https://doi.org/10.5582/irdr.2020.03089
20. Van der Ree M.H., et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Alimentary Pharmacology & Therapeutics. 2015;43(1):102-113. https://doi.org/10.1111/apt.13432
21. DeVincenzo J., et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proceedings of the National Academy of Sciences (PNAS). 2010;107(19):8800-8805. https://doi.org/10.1073/pnas.0912186107
22. Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virol. 2018;28(4):1976. https://doi.org/10.1002/rmv.1976
23. Lesch M., Luckner M., Meyer M., Weege F., Gravenstein I., Raftery M., Sieben C., Martin-Sancho L., Imai-Matsushima A., Welke R.W., Frise R., Barclay W., Schönrich G., Herrmann A., Meyer T.F., Karlas A. RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathog. 201918;15(3):e1007601. https://doi.org/10.1371/journal.ppat.1007601
24. Pashkov E.A., Faizuloev E.B., Korchevaya E.R., Rtishchev A.A., Cherepovich B.S., Sidorov A.V., Poddubikov A.V., Bystritskaya E.P., Dronina Yu.E., Bykov A.S., Svitich O.A., Zverev V.V. Knockdown of FLT4, Nup98, and Nup205 cellular genes as a suppressor for the viral activity of Influenza A/WSN/33 (H1N1) in A549 cell culture. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2021;16(6):476-489 (in Russ.). https://doi.org/10.32362/2410-6593-2021-16-6-476-489
25. Pashkov E.A., Korchevaya E.R., Faizuloev E.B., Pashkov E.P., Zvereva T.A. Rtishchev A.A., Poddubikov A.V., Svitich O.A., Zverev V.V. Creation of model for studying the antiviral effect of small interfering RNAs in vitro. Sanitarnyi vrach. 2022;1 (in Russ.). https://doi.org/10.33920/med-08-2201-07
26. Lee H.K, Loh T.P., Lee C.K., Tang J.W., Chiu L., Koay E.S. A universal influenza A and B duplex real-time RT-PCR assay. J. Med. Virol. 2012;84(10):1646-1651. https://doi.org/10.1002/jmv.23375
27. Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016;5(2):85-86. https://doi.org/10.5501/wjv.v5.i2.85
28. Estrin M.A., Hussein I.T.M., Puryear W.B., Kuan A.C., Artim S.C., Runstadler J.A. Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One. 2018;13(5):e0197246. https://doi.org/10.1371/journal.pone.0197246
29. Piasecka J., Lenartowicz E., Soszynska-Jozwiak M., Szutkowska B., Kierzek R., Kierzek E. RNA Secondary Structure Motifs of the Influenza A Virus as Targets for siRNA-Mediated RNA Interference. Mol. Ther. Nucleic Acids. 2020;19:627-642. https://doi.org/10.1016/j.omtn.2019.12.018
Supplementary files
|
1. Influence of siRNAs complexes (А – FLT4.2 + Nup98.1; B – Nup98.1 + Nup205; C – FLT4.2 + Nup205; D – FLT4.1 + Nup98.1 + Nup205) directed to the FLT4, Nup98, and Nup205 genes on the reproduction of the influenza virus | |
Subject | ||
Type | Research Instrument | |
View
(235KB)
|
Indexing metadata ▾ |
Title | Influence of siRNAs complexes (А – FLT4.2 + Nup98.1; B – Nup98.1 + Nup205; C – FLT4.2 + Nup205; D – FLT4.1 + Nup98.1 + Nup205) directed to the FLT4, Nup98, and Nup205 genes on the reproduction of the influenza virus | |
Type | Исследовательские инструменты | |
Date | 2022-06-30 |
- The low cytotoxicity of siRNA complexes for cells was shown according to the MTT test results when the expression of several genes was simultaneously suppressed.
- siRNA complexes that simultaneously reduce the activity of two or more of these genes suppress viral reproduction in vitro, assessed using viral titration by the cytopathic effect and real time RT-PCR.
- Data were obtained on the correlation between a decrease in the expression of several cellular genes simultaneously and a decrease in viral reproduction.
Review
For citations:
Pashkov E.A., Korotysheva M.O., Pak A.V., Faizuloev E.B., Sidorov A.V., Poddubikov A.V., Bystritskaya E.P., Dronina Yu.E., Solntseva V.K., Zaiceva T.A., Pashkov E.P., Bykov A.S., Svitich O.A., Zverev V.V. Investigation of the anti-influenza activity of siRNA complexes against the cellular genes FLT4, Nup98, and Nup205 in vitro. Fine Chemical Technologies. 2022;17(2):140-151. https://doi.org/10.32362/2410-6593-2022-17-2-140-151
ISSN 2686-7575 (Online)