# INTEGRAL TRANSFORMATION IN A PARTIALLY BOUNDED REGION WITH A RADIAL THERMAL FLOW

### Abstract

### About the Author

**E. M. Kartashov**Russian Federation

D.Sc. (Physics and Mathematics), Professor of the Chair of Higher and Applied Mathematics

86, Vernadskogo Pr., Moscow 119571, Russia

### References

1. Kartashov E.M. Analytical methods in the theory of thermal conductivity of solids. Moscow: Vysshaya shkola Publ., 2001. 550 p. (in Russ.)

2. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Equations in partial derivatives of mathematical physics. Moscow: Vysshaya shkola Publ., 1970. 710 p. (in Russ.)

3. Volkov I.K., Kanatnikov A.N. Integral transforms and operational calculus. Moscow: Publishing House of the N.E. Bauman Moscow State Technical University, 1996. 228 p. (in Russ.)

4. Kartashov E.M. The method of integral transformations in the analytic theory of the thermal conductivity of solids. Izvestiya Rossiiskoi Akademii Nauk. Energetika (Proceedings of RAS. Power Engineering). 1993; 2: 99-127. (in Russ.)

5. Kartashov E.M. Calculation of temperature fields in solids based on improved convergence of FourierHankel series. Izvestiya Rossiiskoi Akademii Nauk. Energetika (Proceedings of RAS. Power Engineering). 1993; 3: 106-125. (in Russ.).

6. Kartashov E.M., Mikhailova N.A. Integral relations for analytic solutions of the generalized equation of nonstationary heat conduction. Vestnik MITHT (Fine Chemical Technologies). 2011; 6(3): 106-110. (in Russ.)

7. Kartashov E.M., Kudinov V.A. Analytical theory of heat conductivity and applied thermoelasticity. Moscow: URSS Publ., 2012. 653 p. (in Russ.).

8. Carslow G., Eger E. Thermal conductivity of solids. Moscow: Nauka Publ., 1964. 487 p. (in Russ.)

9. Attetkov A.V., Volkov I.K. Formation of temperature fields in a region bounded from within by a cylindrical cavity. Vestnik MGTU. Mashinostroenie (Herald of the Bauman Moscow State Technical University. Mechanical Engineering). 1999; 1: 49-56. (in Russ.)

10. Kartashov E.M. On a class of integral transformations for the generalized equation of nonstationary heat conductivity. Inghenerno-phisicheskii zhurnal (Journal of Engineering Physics and Thermophysics). 2008; 81(1): 123-130. (in Russ.)

#### For citation:

Kartashov E.M. INTEGRAL TRANSFORMATION IN A PARTIALLY BOUNDED REGION WITH A RADIAL THERMAL FLOW. *Fine Chemical Technologies*. 2018;13(6):89-96.
(In Russ.) https://doi.org/10.32362/2410-6593-2018-13-6-89-96