Features of distillation separation of multicomponent mixtures
https://doi.org/10.32362/2410-6593-2022-17-2-87-106
Abstract
Objectives. To improve the process of developing energy-efficient flowsheets for the distillation separation of multicomponent aqueous and organic mixtures based on a comprehensive study of the phase diagram structures, including those in the presence of additional selective substances.
Methods. Thermodynamic-topological analysis of phase diagrams; modeling of phase equilibria in the AspenTech software package using the equations of local compositions: Non-Random Two Liquid and Wilson; computational experiment to determine the column parameters for separation flowsheets of model and real mixtures of various nature.
Results. The fractionation conditions of the origin multicomponent mixture due to the use of sharp distillation, pre-splitting process, extractive distillation with individual and binary separating agents were revealed. The columns operation parameters and the energy consumption of the separation flowsheets ensuring the achievement of the required product quality with minimal energy consumption were determined.
Conclusions. Using the original methods developed by the authors earlier and based on the generalization of the results obtained, new approaches to the synthesis of energy-efficient multicomponent mixtures separation flowsheets were proposed. The provisions that form the methodological basis for the development of flowsheets for the separation of multicomponent mixtures and supplement the standard flowsheet synthesis plan with new procedures were formulated.
Keywords
About the Authors
A. K. FrolkovaRussian Federation
Alla K. Frolkova, Dr. Sci. (Eng.), Professor, Head of the Department of Chemistry and Technology of Basic Organic Synthesis
Scopus Author ID 35617659200; Researcher ID G-7001-2018
86, Vernadskogo pr., Moscow, 119571
Competing Interests:
The authors declare no conflicts of interest
A. V. Frolkova
Russian Federation
Anastasiya V. Frolkova, Cand. Sci. (Eng.), Associate Professor, Department of Chemistry and Technology of Basic Organic Synthesis
Scopus Author ID 12782832700; Researcher ID N-4517-2014
86, Vernadskogo pr., Moscow, 119571
Competing Interests:
The authors declare no conflicts of interest
V. M. Raeva
Russian Federation
Valentina M. Raeva, Cand. Sci. (Eng.), Associate Professor, Department of Chemistry and Technology of Basic Organic Synthesis
Scopus Author ID 6602836975; Researcher ID C-8812-2014
86, Vernadskogo pr., Moscow, 119571
Competing Interests:
The authors declare no conflicts of interest
V. I. Zhuchkov
Russian Federation
Valery I. Zhuchkov, Cand. Sci. (Eng.), Associate Professor, Department of Chemistry and Technology of Basic Organic Synthesis
Scopus Author ID 57198290642; Researcher ID AAA-3117-2020
86, Vernadskogo pr., Moscow, 119571
Competing Interests:
The authors declare no conflicts of interest
References
1. Timofeyev V.S., Serafimov L.A., Timoshenko A.V. Principy tehnologii osnovnogo organicheskogo i neftehimicheskogo sinteza (The principles of the technology of basic organic and petrochemical synthesis). Moscow: Vysshaya shkola; 2010. 408 p. (in Russ.). ISBN 978-5-06-006067-6
2. Serafimov L.A., Timofeev V.S., Frolkova A.K. Qualitative research of technological processes and industries as a stage of their intensification based on mathematical modeling with the help of a computer. Intensifikatsiya tekhnologii: materialy, tekhnologii, oborudovanie = Intensification Technological Processes: Materials, Technologies, Equipment. 2009:(6):9–32 (in Russ.).
3. Zharov V.T., Serafimov L.A. Fiziko-himicheskie osnovy distilljacii i rektifikacii (Physico-chemical principles of distillation and rectification). Leningrad: Khimiya; 1975. 240 p. (in Russ.).
4. Frolkova A.V., Mayevskii M.A., Frolkova A.K., Pletnev D.B. Developing Energy-Efficient Technologies for Obtaining Organic Substances Based on a Comprehensive Study of the Reaction and Separation Constituents.Theor. Found. Chem. Eng. 2020;54(6):1215–1222. https://doi.org/10.1134/S0040579520060159
5. Frolkova A.K. Razdelenie azeotropnykh smesei. Fiziko-khimicheskie osnovy i tekhnologicheskie priemy (Separation of azeotropic mixtures. Physico-chemical fundamentals and technological methods). Moscow: VLADOS; 2010. 192 p. (in Russ.). ISBN 978-5-691-01743-8
6. Frolkova A.V., Akishina A.A., Maevskii M.A., Ablizin M.A. Flowsheets of multicomponent multiphase systems separation and material balance calculation features. Theor. Found. Chem. Eng. 2017;51(3):313–319. https://doi.org/10.1134/S0040579517030034
7. Frolkova A.K., Sebyakin A.Yu., Serafimov L.A. Peculiarities of distillation separation of multicomponent separating mixtures. In: Teoreticheskie i prakticheskie aspekty razrabotki innovatsionnykh resursosberegayushchikh tekhnologii razdeleniya zhidkikh smesei: Materialy vserossiiskoi nauchno-prakticheskoi konferentsii (Theoretical and practical aspects of the development of innovative resource-saving technologies for the separation of liquid mixtures: Proceedings of the All-Russian Scientific and Practical Conference). Barnaul. 2016. P. 28–31 in Russ.).
8. Lei Z., Xi X., Dai C., Zhu J., Chen B. Extractive Distillation with the Mixture of Ionic Liquid and Solid Inorganic Salt as Entrainers. AIChE J. 2014;60(8):2994–3004. https://doi.org/10.1002/aic.14478
9. You X.Q., Rodriguez-Donis I., Gerbaud V. Improved design and efficiency of the extractive distillation process for acetone–methanol with water. Ind. Eng. Chem. Res. 2015;54(1):491–501. https://doi.org/10.1021/ie503973a
10. Wu Y., Chien I. Design and control of heterogeneous azeotropic column system for the separation of pyridine and water. Ind. & Eng. Chem. Res. 2009;48(23):10564–10576. https://doi.org/10.1021/ie901231s
11. Skiborowski M., Harwardt A., Marquardt W. Efficient optimization-based design for the separation of heterogeneous azeotropic mixtures. Comp. & Chem. Eng. 2015;72:34–51. https://doi.org/10.1016/j.compchemeng.2014.03.012
12. Denes F., Lang P., Joulia X. Generalized closed double-column system for batch heteroazeotropic distillation. Sep. Purif. Technol. 2012;89:297–308. https://doi.org/10.1016/j.seppur.2012.01.042
13. Hegely L., Gerbaud V., Lang P. Generalized model for heteroazeotropic batch distillation with variable decanter hold-up. Sep. Purif. Technol. 2013;115:9–19. https://doi.org/10.1016/j.seppur.2013.04.031
14. Modla G.P., Lang B.K., Molnar K. Batch heteroazeotropic rectification under continuous entrainer feeding: I. Feasibility studies. Comp. Aided Chem. Eng. 2003;15:974–977. https://doi.org/10.1016/S1570-7946(03)80434-0
15. Tóth A.J., Szanyi A., Haaze E., Mizsey P. Separation of process wastewater with extractive heterogeneious – azeotropic distillation. Hungarian J. Ind. & Chem. 2016;44(1):29–32. https://doi.org/10.1515/hjic-2016-0003
16. Szanyi A., Mizsey P., Fonyo Z. Novel hybrid separation processes for solvent recovery based on positioning the extractive heterogeneous azeotropic distillation. Chem. Eng. Proc. 2004;43(3):327–338. https://doi.org/10.1016/s0255-2701(03)00132-6
17. Benyounes H., Shen W., Gerbaud V. Entropy flow and energy efficiency analysis of extractive distillation with a heavy entrainer. Ind. Eng. Chem. Res. 2014;53(12):4778–4791. https://doi.org/10.1021/ie402872n
18. Kraemer K., Harwardt A., Skiborowski M., Mitra S., Marquardt W. Shortcut-based design of multicomponent heteroazeotropic distillation. Chem. Eng. Res. & Design. 2011;89(8):1168–1189. https://doi.org/10.1016/j.cherd.2011.02.026
19. Szanyi A., Mizsey P., Fonyó Z. Separation of highly non-ideal quaternary mixtures with extractive heterogeneous-azeotropic distillation. Chem. Biochem. Eng. Q. 2005:19(2):111–121.
20. Kleimenova M.N., Komarova L.F., Lazutkina Yu.S. Development of resource-saving technologies in the production of organosilicon enamels basing on rectification. Khimiya v interesakh ustoichivogo razvitiya = Chemistry for Sustainable Development. 2013;(21):201–208. URL: https://sibran.ru/upload/iblock/4e1/development_of_resource_saving_technologies_in_the_production_of_organosilicon_enamels_basing_on_rec.pdf
21. Yus D., Moonyong L. Distillation design and optimization of quaternary azeotropic mixtures for waste solvent recovery. J. Ind. Eng. Chem. 2018;67:255–265. https://doi.org/10.1016/j.jiec.2018.06.036
22. Gerbaud V., Rodríguez-Donis I. Distillation: Equipment and Processes. Charter 6. In: Gorak A., Oluji Z. (Eds.). Extractive Distillation. Academic Press; 2014. P. 201–245. https://doi.org/10.1016/B978-0-12-386878-7.00006-1
23. Huang H.-H., Ramaswamy S., Tschirner U.W., Ramarao B.V. A review of separation technologies in current and future biorefinerirs. Sep. Purif. Technol. 2008;62(1):1–21. https://doi.org/10.1016/j.seppur.2007.12.011
24. Zieborak K. On the quaternary azeotropes formed by paraffinic and naphthenic hydrocarbons with benzene, ethanol and water. Rocz. Chem. 1951;25(3):388–391.
25. Zieborak K., Galska A. A method for determining the composition of quaternary azeotropes and the position of heteroazeotropic lines. Bull. Acad. Pol. Sci. 1955;3(7):379.
26. Kominek-Szczepanik M. Four-component azeotropes. Rocz. Chem. 1959;33(2):553.
27. Imamura I., Kutsuwa Y., Matsuyama H. Reduction of the existing region of a quaternary azeotrope by use of a topological condition. Kagaku Kogaku Ronbunshu. 1992;18(4):535–538. https://doi.org/10.1252/kakoronbunshu.18.535
28. Wang Q., Yan X.-H., Chen G.-H., Han S.-J. Measurement and prediction of quaternary azeotropes for cyclohexane + 2-propanol + ethyl acetate + butanone system at elevated pressures. J. Chem. Eng. Data. 2003;48(1):66–70. https://doi.org/10.1021/je020091a
29. Galska-Krajewska A., Zieborak K. Quaternary positive-negative azeotrope. Rocz. Chem. 1962;36(1):119.
30. Zieborak K., Galska-Krajewska A. Quaternary positive-negative azeotrope. Bull. Acad. Pol. Sci. 1959;7(4):253.
31. Serafimov L.A., Frolkova A.K., Frolkova A.V. Poincaré integral invariants and separating manifolds of equilibrium open evaporation diagrams. Theor. Found. Chem. Eng . 2013;47(2):124–127. https://doi.org/10.1134/S0040579512060218
32. Okhlopkova E.A., Frolkova A.V., Frolkova A.K. Thermodynamic-topological analysis of the of the phase diagram structure of a five-component system and separation scheme synthesis for a mixture of organic products. Khimiya i tekhnologiya organicheskikh veshchestv = Chemistry and Technology of Organic Substances. 2020;4(16):15–23 (in Russ.). https://doi.org/10.54468/25876724_2020_4_15
33. Frolkova A.V., Makhnarilova E.G. Determination of separatric manifold structure of five-component system phase diagram. In: 22nd International Conference on Chemical Thermodynamics in Russia (RCCT-2019): Book of Abstracts. Saint Petersburg, Russia, June 19-23; 2019. P. 250.
34. Frolkova A.V., Frolkova A.K., Ososkova T.E. Topological transformations of phase diagrams of quaternary systems through the boundary tangential azeotrope stage. Russ. Chem. Bull. 2020;69(11):2059–2066. https://doi.org/10.1007/s11172-020-3000-7
35. Peshekhontseva M.E., Maevskiy M.A., Gaganov I.S., Frolkova A.V. Areas of energy advantage for flowsheets of separation modes for mixtures containing components with similar volatilities. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2020;15(3):7–20 (in Russ.). https://doi.org/10.32362/2410-6593-2020-15-3-7-20
36. Frolkova A.V., Maevskii M.A., Frolkova A.K., Pletnev D.B. Developing of energy-efficient technologies for obtaining organic substances based on a comprehensive study of the reaction and separation components. Theor. Found. Chem. Eng. 2020;54(6):1215–1222. https://doi.org/10.1134/S0040579520060159 [Original Russian Text: Frolkova A.V., Maevskii M.A., Frolkova A.K., Pletnev D.B. Developing of energy-efficient technologies for obtaining organic substances based on a comprehensive study of the reaction and separation components. Teoreticheskie osnovy khimicheskoi tekhnologii. 2020;54(6):706–713 (in Russ.). https://doi.org/10.31857/S0040357120060159]
37. Frolkova A.V., Peshekhontseva M.S., Gaganov I.S. Sharp distillation for quaternary systems. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2018;13(3):41–48 (in Russ.). https://doi.org/10.32362/24106593-2018-13-3-41-48
38. Frolkova A.V., Shashkova Y.I., Frolkova А.К., Mayevskiy М.A. Comparison of alternative methods for methyl acetate + methanol + acetic acid + acetic anhydride mixture separation. Fine Chem. Technol. 2019;14(5):51–60. https://doi.org/10.32362/2410-6593-2019-14-5-51-60
39. Frolkova A.V., Logachev, Ososkova T.E. Separation of diethyl ether + hexane + ethyl acetate + ethanol quaternary system via extractive distillation. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2020;63(10):59–63. https://doi.org/10.6060/ivkkt.20206310.6228
40. Ryzhkin D.A., Raeva V.M. Analysis of energy consumption of extractive distillation flowsheets of four- component solvent mixture. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. = ChemChemTech. 2021;64(6):47−55 (in Russ.). https://doi.org/10.6060/ivkkt.20216406.6326
41. Raeva V.M., Stoyakina I.E. Selecting Extractive Agents on the Basis of Composition–Excess Gibbs Energy Data. Russ. J. Phys. Chem. A. 2021;95(9):1779–1790. https://doi.org/10.1134/S003602442109020X
42. Frolkova A.V., Mayevskiy M.A., Smirnov A.Yu. Phase Equilibrium of Systems Cyclohexene + Water + Cyclohexanone + N-Methyl-2-pyrrolidone (+Acetonitrile). J. Chem. Eng. Data. 2019;64(6):2888–2893. https://doi.org/10.1021/acs.jced.9b00245
43. Frolkova A.V., Mayevskiy M.A., Frolkova A.K. Analysis of Phase Equilibrium Diagrams of Cyclohexene + Water + Cyclohexanone + Solvent System. J. Chem. Eng. Data. 2018;63(3):679–683. https://doi.org/10.1021/acs.jced.7b00870
44. Serafimov L.A. Thermodynamical and topological analysis of liquid-vapor phase equilibrium diagrams and problems rectification of multicomponent mixtures. In: S.I. Kuchanov (Ed.). Mathematical Method in Contemporary Chemistry. Amsterdam: Gordon and Breach Publishers; 1996. Chapter 10. P. 557–605.
45. Frolkova A., Frolkova A., Gaganov I. The study of the extractive and auto‐extractive distillation of azeotropic mixtures. Chem. Eng. Technol. 2021;44(2):1397–1402. https://doi.org/10.1002/ceat.202100024
46. Okhlopkova E.A., Frolkova A.V. Comparative Analysis of Separation Schemes of Reaction Mixtures of Epichlorohydrin Production in the Presence of Various Solvents. Theor. Found. Chem. Eng. 2019;53(6):1028–1034. https://doi.org/10.1134/S0040579519060101
47. Frolkova A.V., Ososkova T.E., Frolkova A.K. Thermodynamic and Topological Analysis of Phase Diagrams of Quaternary Systems with Internal Singular Points. Theor. Found. Chem. Eng. 2020;54(3):407–419. https://doi.org/10.1134/S0040579520020049 [Original Russian Text: Frolkova A.V., Ososkova T.E., Frolkova A.K. Thermodynamic and topological analysis of phase diagrams of quaternary systems with internal singular points. Teoreticheskie osnovy khimicheskoi tekhnologii. 2020; 54(3):286–298. https://doi.org/10.31857/S0040357120020049]
48. Raeva, V.M., Sazonova, A.Yu. Separation of ternary mixtures by extractive distillation with 1,2-ethandiol and glycerol. Chem. Eng. Res. Des. 2015;99:125–131. https://doi.org/10.1016/j.cherd.2015.04.032
49. Zhao L., Lyu X., Wang W., Shan J., Qiu T. Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation. Comp. Chem. Engineering. 2017;100:27–37. https://doi.org/10.1016/j.compchemeng.2017.02.007
50. Zhao Y., Jia H., Geng X., Wen G., Zhu Z., Wang Y. Comparison of Conventional Extractive Distillation and Heat Integrated Extractive Distillation for Separating Tetrahydrofuran/Ethanol/Water. Chem. Eng. Transactions. 2017; 61:751–756. https://doi.org/10.3303/CET1761123
51. Yang A., Zou H., Chien I.L., Wang D., Shun’an W., Jingzheng R., Weifeng S. Optimal Design and Effective Control of Triple-Column Extractive Distillation for Separating Ethyl Acetate/Ethanol/Water with Multi-Azeotrope. Ind. Eng. Chem. Res. 2019;58(17):7265–7283. https://doi.org/10.1021/acs.iecr.9b00466
52. Shi X., Zhu X., Zhao X., Zhang Z. Performance evaluation of different extractive distillation processes for separating ethanol/tert-butanol/water mixture. Process Safety and Environmental Protection. 2020;137:246–260. https://doi.org/10.1016/j.psep.2020.02.015
53. Zhaoyuan M., Dong Y., Jiangang Z., Huiyuan L., Chen Zhengrun C., Peizhe C., Zhaoyou Z., Lei W., Yinglong W., Yixin M., Jun G. Efficient recovery of benzene and n-propanol from wastewater via vapor recompression assisted extractive distillation based on techno-economic and environmental analysis. Process Safety and Environmental Protection. 2021;148:462–472. https://doi.org/10.1016/j.psep.2020.10.033
54.
Supplementary files
|
1. Main stages of the organic compound production technology development | |
Subject | ||
Type | Исследовательские инструменты | |
View
(319KB)
|
Indexing metadata ▾ |
- The conditions of fractionation of the origin multicomponent mixture due to the use of sharp distillation, pre-splitting process, and extractive distillation were revealed.
- New approaches to the synthesis of energy-efficient multicomponent mixtures separation flowsheets were proposed.
- Technological flowsheets of separation of acetone–chloroform–ethanol (isopropanol)–water, ethanol–cyclohexane–chloroform–water, ethyl acetate–methyl ethyl ketone–cyclohexane–isopropanol, methanol–tert-butanol–methyl-tret-butyl ether–water mixtures were developed, the columns static parameters were determined.
Review
For citations:
Frolkova A.K., Frolkova A.V., Raeva V.M., Zhuchkov V.I. Features of distillation separation of multicomponent mixtures. Fine Chemical Technologies. 2022;17(2):87-106. https://doi.org/10.32362/2410-6593-2022-17-2-87-106