Knockdown of FLT4, Nup98, and Nup205 cellular genes as a suppressor for the viral activity of Influenza A/WSN/33 (H1N1) in A549 cell culture
https://doi.org/10.32362/2410-6593-2021-16-6-476-489
Abstract
Objectives. To evaluate the effect of cellular genes FLT4, Nup98, and Nup205 on the reproduction of the influenza A virus in A549 human lung cancer cell line.
Methods. The work was carried out using the equipment of the center for collective use of the I.I. Mechnikov Research Institute of Vaccines and Sera (Russia). The virus-containing fluid was collected within three days from the moment of transfection and infection and the intensity of viral reproduction was assessed by viral titration and hemagglutination reaction. The viral RNA concentration was determined by real-time reverse-transcription polymerase chain reaction (RT-PCR). To calculate statistically significant differences between groups, the nonparametric Mann–Whitney test was used.
Results. In cells treated with small interfering RNAs (siRNAs) targeted at FLT4, Nup98, and Nup205 genes, a significant decrease in their expression and indicators of viral reproduction (virus titer, hemagglutinating activity, viral RNA concentration) was observed at a multiplicity of infection (MOI) = 0.1. Additionally, it was found that a decrease in the expression of target genes using siRNA does not lead to a significant decrease in cell survival. The viral titer in cells treated with siRNA FLT4.2, Nup98.1, and Nup205 on the first day was lower by an average of 1.0 lg, and on the second and third days, by 2.2–2.3 lg, compared to cells treated with nonspecific siRNA. During real-time RT-PCR, a significant decrease in the concentration of viral RNA was observed with siRNA Nup98.1 (up to 190 times) and Nup205 (up to 30 times) on the first day, 26 and 29 times on the second day, and 6 and 30 times on the third day, respectively. For FLT4.2 siRNA, the number of viral RNA copies decreased by 23, 18, and 16 times on the first, second, and third days. Similar results were obtained when determining the hemagglutinating activity of the virus. The hemagglutinating activity on the third day most strongly decreased in cells treated with siRNA Nup205 and FLT4.2 (16 times). In cells treated with siRNA FLT4.1, Nup98.1, and Nup98.2, hemagglutinating activity decreased by 8 times.
Conclusions. In the present study, three cellular genes (FLT4, Nup98, and Nup205) were identified—the decrease in the expression of which effectively suppresses viral reproduction— and the original siRNA sequences were obtained. The results obtained are important for creating therapeutic and prophylactic medication, whose action is based on the RNA interference mechanism.
About the Authors
E. A. PashkovRussian Federation
Evgeny A. Pashkov - Postgraduate Student, Department of Microbiology, Virology and Immunology, I.M. Sechenov FMSMU (Sechenov University); Junior Researcher, Laboratory of Molecular Immunology, FSBSI “I. Mechnikov Research Institute of Vaccines and Sera”
8, Trubetskaya ul., Moscow, 119991; 5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
E. B. Faizuloev
Russian Federation
Evgeny B. Faizuloev - Cand. Sci. (Biol.), Head of the Laboratory of Molecular Virology.
5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
E. R. Korchevaya
Russian Federation
Ekaterina R. Korchevaya - Junior Researcher, Laboratory of Molecular Virology.
5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
A. A. Rtishchev
Russian Federation
Artem A. Rtishchev - Junior Researcher, Laboratory of RNA viruses.
5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
B. S. Cherepovich
Russian Federation
Bogdan S. Cherepovich - Junior Researcher, Laboratory of RNA viruses.
5А, Malyi Kazennyy pereulok, Moscow, 105064
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
А. V. Sidorov
Russian Federation
Alexander V. Sidorov - Cand. Sci. (Biol.), Head of the Laboratory of DNA viruses.
5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
A. V. Poddubikov
Russian Federation
Alexander A. Poddubikov - Cand. Sci. (Biol.), Head of the Laboratory of Microbiology of Opportunistic Pathogenic Bacteria.
5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
Е. P. Bystritskaya
Russian Federation
Elizaveta P. Bystritskaya - Junior Researcher, Laboratory of Molecular Immunology.
5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
Yu. E. Dronina
Russian Federation
Yuliya E. Dronina - Cand. Sci. (Med.), Associate Professor, Department of Microbiology, Virology and Immunology, I.M. Sechenov FMSMU (Sechenov University); Senior Researcher, Laboratory of Legionellosis, N.F. Gamaleya NRC EM (The Gamaleya National Center).
8, Trubetskaya ul., Moscow, 119991; 18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
A. S. Bykov
Russian Federation
Anatoly S. Bykov - Dr. Sci. (Med.), Professor, Department of Virology and Immunology.
8, Trubetskaya ul., Moscow, 119991
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
O. А. Svitich
Russian Federation
Oxana A. Svitich - Corresponding Member of the Russian Academy of Sciences, Dr. Sci. (Med.), Head FSBSI “I. Mechnikov Research Institute of Vaccines and Sera,” Head of the Laboratory of Molecular Immunology, FSBSI “I. Mechnikov Research Institute of Vaccines and Sera”; Professor, Department of Microbiolody, Virology and Immunology, I.M. Sechenov FMSMU (Sechenov University).
8, Trubetskaya ul., Moscow, 119991; 5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
V. V. Zverev
Russian Federation
Vitaliy V. Zverev - Full Member of the Russian Academy of Sciences, Dr. Sci. (Biol.), Scientific Director FSBSI “I. Mechnikov Research Institute of Vaccines and Sera”; Head of the Department of Microbiolody, Virology and Immunology, I.M. Sechenov FMSMU (Sechenov University).
8, Trubetskaya ul., Moscow, 119991; 5А, Malyi Kazennyi pereulok, Moscow, 105064
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
References
1. . Hussain M., Galvin H.D., Haw T.Y., Nutsford A.N., Husain M. Drug resistance in influenza A virus: the epidemiology and management. Infect. Drug Resist. 2017 Apr 20;10:121–134. https://doi.org/10.2147/IDR.S105473
2. Peasah S.K., Azziz-Baumgartner E., Breese J, Meltzer M.I., Widdowson MA. Influenza cost and cost-effectiveness studies globally – a review. Vaccine. 2013;31(46):5339–5348. https://doi.org/10.1016/j.vaccine.2013.09.013
3. Rezkalla S.H., Kloner R.A. Influenza-related viral myocarditis. WMJ. 2010;109(4):209–213. PMID: 20945722. URL: https://wmjonline.org/wp-content/uploads/2010/109/4/209.pdf
4. Nguyen J.L., Yang W., Ito K., Matte T.D., Shaman J., Kinney P.L. Seasonal Influenza Infections and Cardiovascular Disease Mortality. JAMA Cardiol. 2016;1(3):274–281. PMID: 27438105; PMCID: PMC5158013 https://doi.org/10.1001/jamacardio.2016.0433
5. Ekstrand J.J. Neurologic complications of influenza. Semin. Pediatr. Neurol. 2012;19(3):96–100. https://doi.org/10.1016/j.spen.2012.02.004
6. Edet A., Ku K., Guzman I., Dargham H.A. Acute Influenza Encephalitis/Encephalopathy Associated with Influenza A in an Incompetent Adult. Case Rep. Crit. Care. 2020;2020:6616805. https://doi.org/10.1155/2020/6616805
7. Err H., Wiwanitkit V. Emerging H6N1 influenza infection: renal problem to be studied. Ren. Fail. 2014;36(4):662. https://doi.org/10.3109/0886022X.2014.883934
8. Leneva I.А., Egorov A.Yu., Falynskova I.N., Маkhmudоvа N.R., Kartashova N.P., Glubokova E.A., Vartanova N.O., Poddubikov A.V. Induction of secondary bacterial pneumonia in mice infected with pandemic and laboratory strains of the H1N1 influenza virus. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology. 2019;(1):68–74 (in Russ.). https://doi.org/10.36233/03729311-2019-1-68-74
9. Metersky M.L., Masterton R.G., Lode H., File T.M. Jr., Babinchak T. Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza. Int. J. Infect. Dis. 2012;16(5):e321–31. https://doi.org/10.1016/j.ijid.2012.01.003
10. Vanderbeke L., Spriet I., Breynaert C., Rijnders B.J.A., Verweij P.E., Wauters J. Invasive pulmonary aspergillosis complicating severe influenza: epidemiology, diagnosis and treatment. Curr. Opin. Infect. Dis. 2018;31(6):471–480. https://doi.org/10.1097/QCO.0000000000000504
11. Van der Vries E., Schutten M., Fraaij P., Boucher C., Osterhaus A. Influenza virus resistance to antiviral therapy. Adv. Pharmacol. 2013;67:217–246. https://doi.org/10.1016/B978-0-12-405880-4.00006-8
12. Han J., Perez J., Schafer A., Cheng H., Peet N., Rong L., Manicassamy B. Influenza Virus: Small Molecule Therapeutics and Mechanisms of Antiviral Resistance. Curr. Med. Chem. 2018;25(38):5115–5127. https://doi.org/10.2174/0929867324666170920165926
13. Looi Q.H., Foo J.B., Lim M.T., Le C.F., Show P.L. How far have we reached in development of effective influenza vaccine? Int. Rev. Immunol. 2018;37(5):266–276. https://doi.org/10.1080/08830185.2018.1500570
14. Pleguezuelos O., James E., Fernandez A., Lopes V., Rosas L.A., Cervantes-Medina A., Cleath J., Edwards K., Neitzey D., Gu W., Hunsberger S., Taubenberger J.K., Stoloff G., Memoli M.J. Efficacy of FLU-v, a broad-spectrum influenza vaccine, in a randomized phase IIb human influenza challenge study. NPJ Vaccines. 2020;5(1):22. https://doi.org/10.1038/s41541-020-0174-9
15. Wang F., Chen G., Zhao Y. Biomimetic nanoparticles as universal influenza vaccine. Smart Mater. Med. 2020;1:21–23. https://doi.org/10.1016/j.smaim.2020.03.001
16. Smith M. Vaccine safety: medical contraindications, myths, and risk communication. Pediatr. Rev. 2015;36(6):227–238.
17. Wang J., Wu Y., Ma C., Fiorin G., Wang J., Pinto L.H., et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc. Natl. Acad. Sci. USA. 2013;110(4):1315–1320. https://doi.org/10.1073/pnas.1216526110
18. Leneva I.A., Russell R.J., Boriskin Y.S., Hay A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral Res. 2009;81(2):132–140. https://doi.org/10.1016/j.antiviral.2008.10.009
19. Hurt A.C., Ernest J., Deng Y.M., Iannello P., Besselaar T.G., Birch C., et al. Emergence and spread of oseltamivirresistant influenza A (H1N1) viruses in Oceania, Southeast Asia and South Asia. Antiviral Res. 2009;83(1):90–93. https://doi.org/10.1016/j.antiviral.2009.03.003
20. Hurt A.C. The epidemiology and spread of drug resistant human influenza viruses. Curr. Opin. Virol. 2014;8:22–29. https://doi.org/10.1016/j.coviro.2014.04.009
21. Lampejo T. Influenza and antiviral resistance: an overview. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39(7):1201–1208. https://doi.org/10.1007/s10096-020-03840-9
22. Fire A.Z. Gene silencing by double-stranded RNA. Cell Death Differ. 2007;14(12):1998–2012. https://doi.org/10.1038/sj.cdd.4402253
23. Fire A., Xu S.Q., Montgomery M.K., Kostas S.A., Driver S.E., Mell C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669): 806–811. https://doi.org/10.1038/35888
24. Faizuloev E.B., Nikonova A.A., Zverev V.V. Prospects for the development of antiviral drugs based on small interfering RNAs. Voprosy virusologii = Problems of Virology. 2013;(S1):155–169 (in Russ.). URL: https://cyberleninka.ru/article/n/perspektivy-sozdaniya-protivovirusnyh-preparatov-na-osnove-malyh-interferiruyuschih-rnk
25. McManus M.T., Sharp P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 2002;3(10):737–747. https://doi.org/10.1038/nrg908
26. Estrin M.A., Hussein I.T.M., Puryear W.B., Kuan A.C., Artim S.C., Runstadler J.A. Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One. 2018;13(5):e0197246. https://doi.org/10.1371/journal.pone.0197246
27. Janssen H.L., Reesink H.W., Lawitz E.J., Zeuzem S., Rodriguez-Torres M., Patel K., van der Meer A.J., Patick A.K., Chen A., Zhou Y., Persson R., King B.D., Kauppinen S., Levin A.A., Hodges M.R. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 2013;368(18):1685–1394. https://doi.org/10.1056/nejmoa1209026
28. Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virol. 2018;28(4):e1976. https://doi.org/10.1002/rmv.1976
29. Hoy S.M. Patisiran: First Global Approval. Drugs. 2018;78(15):1625–1631. https://doi.org/10.1007/s40265-0180983-6
30. Lesch M., Luckner M., Meyer M., Weege F., Gravenstein I., Raftery M., Sieben C., Martin-Sancho L., ImaiMatsushima A., Welke R.W., Frise R., Barclay W., Schönrich G., Herrmann A., Meyer T.F, Karlas A. RNAi-based small molecule repositioning reveals clinically approved ureabased kinase inhibitors as broadly active antivirals. PLoS Pathog. 2019;15(3):e1007601. https://doi.org/10.1371/journal.ppat.1007601
31. Karlas A., Machuy N., Shin Y., Pleissner K.P., Artarini A., Heuer D., et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature. 2010;463(7282):818–822. https://doi.org/10.1038/nature08760
32. Arenas-Hernandez M., Vega-Sanchez R. Housekeeping gene expression stability in reproductive tissues after mitogen stimulation. BMC Res. Notes. 2013;6:285. https://doi.org/10.1186/1756-0500-6-285
33. Lee H.K., Loh T.P., Lee C.K., Tang J.W., Chiu L., Koay E.S. A universal influenza A and B duplex real-time RTPCR assay. J. Med. Virol. 2012;84(10):1646–1651. https://doi.org/10.1002/jmv.23375
34. Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016;5(2):85–86. https://doi.org/10.5501/wjv.v5.i2.85
35. Eierhoff T., Hrincius E.R., Rescher U., Ludwig S., Ehrhardt C. The Epidermal Growth Factor Receptor (EGFR) promotes uptake of influenza А viruses (IAV) into host cells. PLoS Pathog. 2010;6(9):e1001099. https://doi.org/10.1371/journal.ppat.1001099
36. Shaw M.L., Stertz S. Role of Host Genes in Influenza Virus Replication. In: Tripp R., Tompkins S. (Eds.). Roles of Host Gene and Non-coding RNA Expression in Virus Infection. Current Topics in Microbiology and Immunology. 2017;419:151–189. https://doi.org/10.1007/82_2017_30
37. Watanabe T., Watanabe S., Kawaoka Y. Cellular networks involved in the influenza virus life cycle. Cell Host & Microbe. 2010;7(6):427–439. https://doi.org/10.1016/j.chom.2010.05.008
38. Hussain M., Galvin H.D., Haw T.Y., Nutsford A.N., Husain M. Drug resistance in influenza A virus: the epidemiology and management. Infect. Drug Resist. 2017;10:121–134. https://doi.org/10.2147/IDR.S105473
39. Sanjuán R., Domingo-Calap P. Mechanisms of viral mutation. Cell. Mol. Life Sci. 2016;73(23):4433–4448. https://doi.org/10.1007/s00018-016-2299-6
40. Presloid J.B., Novella I.S. RNA viruses and RNAi: quasispecies implications for viral escape. Viruses. 2015;7(6):3226–3240. https://doi.org/10.3390/v7062768
41. Das A.T., Brummelkamp T.R., Westerhout E.M., Vink M., Madiredjo M., Bernards R., et al. Human immunodeficiency virus type 1 escapes from RNA interferencemediated inhibition. J. Virol. 2004;78(5):2601–5. https://doi.org/10.1128/JVI.78.5.2601-2605.2004
42. Rupp J.C., Locatelli M., Grieser A., Ramos A., Campbell P.J., Yi H., et al. Host cell copper transporters CTR1 and ATP7A are important for Influenza A virus replication. Virol J. 2017;14(1):11. https://doi.org/10.1186/s12985-0160671-7
43. Wang R., Zhu Y., Zhao J., Ren C., Li P., Chen H., et al. Autophagy Promotes Replication of Influenza A Virus In Vitro. J. Virol. 2019;93(4):e01984–18. https://doi.org/10.1128/JVI.01984-18
Supplementary files
|
1. Influence of siRNA on the expression of genes FLT4, Nup98, and Nup205. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(87KB)
|
Indexing metadata ▾ |
- Three cellular genes (FLT4, Nup98, and Nup205) have been identified, the decrease in the expression of which can suppress viral reproduction—a promising opportunity.
- Original siRNA sequences for these genes were obtained.
- Low cytotoxicity of siRNA was shown according to the results obtained from the MTT assay.
- siRNAs that reduce the activity of the genes suppress viral reproduction in vitro assessed via viral titration, real-time RT-PCR, and HA.
- Data were obtained on the correlation between decreased expression of cellular genes and decreased viral reproduction.
Review
For citations:
Pashkov E.A., Faizuloev E.B., Korchevaya E.R., Rtishchev A.A., Cherepovich B.S., Sidorov А.V., Poddubikov A.V., Bystritskaya Е.P., Dronina Yu.E., Bykov A.S., Svitich O.А., Zverev V.V. Knockdown of FLT4, Nup98, and Nup205 cellular genes as a suppressor for the viral activity of Influenza A/WSN/33 (H1N1) in A549 cell culture. Fine Chemical Technologies. 2021;16(6):476-489. https://doi.org/10.32362/2410-6593-2021-16-6-476-489