Preview

Fine Chemical Technologies

Advanced search

COMPOSITION AND STRUCTURE OF THE HUNTITE-FAMILY COMPOUNDS

https://doi.org/10.32362/2410-6593-2018-13-6-42-51

Full Text:

Abstract

The literature data on the composition and structure of rare-earth borate compounds of the huntite family with the general composition LnM3(BO3)4, where Ln3+ = Y, La = Lu and M3+ = Al, Fe, Cr, Ga, Sc as well as a number of solid solutions with М3+ = Sc are systematized. The difference between the real compositions of crystals and the compositions of the initial mixture, the most characteristic of rare-earth scandium borates, is shown. The significant role of the composition in the manifestation of the compounds symmetry is established. The necessity of determining the crystals symmetry only on single-crystals with detailed analysis of diffraction reflections is proved. Morphotropic series were selected depending on changes in the ionic radii of Ln and M. Attention is paid to the peculiarity of the structural behavior of Cr3+ ions. It was revealed that the formation of solid solutions and internal solid solutions is most likely for rare-earth scandium borates. The implementation of polytypic modifications for LnM3(BO3)4, where M3+ = Al, Cr, and polymorphs for a number of Ln ions with M3+ = Fe, the existence of which is not excluded for M3+ = Sc, is demonstrated. Crystal-chemical effects observed for huntite-like crystals (morphotropy, isomorphism, polymorphism, polytypy; internal solid solutions; phase order-disorder phase transitions of different nature) with specific features of scandium borates are presented. The realization of polymorphism and polytypism for compounds of the huntite family confirms the crystal-chemical situation, according to which hightemperature polymorphic modifications should form more symmetrical compounds, but it is not typical of polytypic modifications.

About the Authors

I. A. Kaurova
MIREA - Russian Technological University (Physico-Technological Institute)
Russian Federation

Ph.D. (Chemistry), Leading Researcher of the B.A. Dogadkin Chair of Physics and Chemistry of Materials,

78, Vernadskogo pr., Moscow 119454, Russia



D. M. Gorshkov
MIREA - Russian Technological University (Physico-Technological Institute)
Russian Federation

Correspondence Postgraduate Student, Engineer of the B.A. Dogadkin Chair of Physics and Chemistry of Material

78, Vernadskogo pr., Moscow 119454, Russia



G. M. Kuz'micheva
MIREA - Russian Technological University (Physico-Technological Institute)
Russian Federation

D.Sc. (Chemistry), Professor of the B.A. Dogadkin Chair of Physics and Chemistry of Materials,

78, Vernadskogo pr., Moscow 119454, Russia

ResearcherID А-7602-2014



V. B. Rybakov
M.V. Lomonosov Moscow State University
Russian Federation

Ph.D. (Chemistry), Senior Researcher of the Chair of General Chemistry, Chemical Faculty

Vorobyovy Gory, Moscow 119992, Russia



References

1. Mills A.D. Crystallographic data for new rare earth borate compounds RX3(BO3)4. Inorg. Chem. 1962; 1(4): 960-961.

2. Sardar D.K., Castano F., French J.A., Gruber J.B., Reynolds T.A., Alekel T., Kezcler D.A., Clark B.L. Spectroscopic and laser properties of Nd3+ in LaSc3(BO3)4 host. J. Appl. Phys. 2001; 90(10): 4997-5001.

3. Belokoneva E.L. The structures of new germanates, gallates, borates, and silicates with laser, piezoelectric, ferroelectric, and ion-conducting properties. Russ. Chem. Rev. 1994; 63: 533-549.

4. Leonyuk N.I., Leonyuk L.I. Growth and characterization of RM3(BO3)4 crystals. Prog. Cryst. Growth Charact. Mater. 1995; 31(3-4): 179-278.

5. Wang Y.H., Li X.X. Synthesis and photoluminescence properties of LnAl3(BO3)4:Eu3+(Ln = La3+, Gd3+) under UV and VUV excitation. J.Electrochem. Soc. 2006; 153( 3): G238–G241.

6. Plachinda P.A., Belokoneva E.L. High temperature synthesis and crystal structure of new representatives of the huntite family. Cryst. Res. Technol. 2008; 43(2): 157-165.

7. Jarchow O., Lutz F., Klaska K.H. Polymophie and Fehlordnung von NdAl3(BO3)4. Z. Krist. 1979;149: 162.

8. Ballman A.A. New series of synthetic borates isostructural with carbonate mineral huntite. Amer. Mineralogist. 1962; 47(11-12): 1380-1383.

9. Borovikova E.Y., Dobretsova E.A., Boldyrev K.N., Kurazhkovskaya V.S., Maltsev V.V., Leonyuk N.I. Vibrational spectra and factor group analysis of rareearth chromium borates RCr3(BO3)4, with R = La–Ho. Vibr. Spectrosc. 2013; 68: 82-90.

10. Kurazhkovskaya V.S., Dobretsova E.A., Borovikova E.Y., Mal’tsev V.V., Leonyuk N.I. Infrared spectroscopy and the structure of rare-earth chromium borates RCr3(BO3)4 (R = La–Er). J. Struct. Chem. 2011; 52(4): 699-707.

11. Wang G., Gallagher H.G., Han T.P.J., Henderson B. The growth and optical assessment of Cr3+-doped RX(BO3)4 crystals with R= Y, Gd, X= Al, Sc. J. Cryst.Growth. 1996; 163(3): 272-278.

12. Parthe E., Hu S.Z. β-LaSc3(BO3)4: correction of the crystal structure. Mater. Res. Innovat. 2003; 7(6): 353-354.

13. Goryhnov A.V., Kuz'micheva G.M., Mukhin B.V., Zharikov E.V., Ageev A.Y., Kutovoy S.A., Kuz'min O.V. An X-ray diffraction study of LaSc3(BO3)4 crystals activated with chromium and neodymium ions. Russ. J. Inorg. Chem. 1996; 41(10): 1531-1536.

14. Wang G., He M., Chen W., Lin Z., Lu S., Wu Q. Structure of low temperature phase γ-LaSc3(BO3)4 crystal. Mater. Res. Innovat. 1999; 2(6): 341-344.

15. Peterson G.A., Keszler D.A., Reynolds T.A. Stoichiometric, trigonal huntite borate CeSc3(BO3)4. Int. J. Inorg. Mater. 2000; 2( 1): 101–106.

16. Kuz’micheva G.M., Kaurova I.A., Rybakov V.B., Podbel’sky V.V., Chuykin N.K., Structural instability in single-crystal rare-earth scandium borates RESc3(BO3)4. Cryst. Growth Des. 2018; 18(3): 1571-1580.

17. Kuz’micheva G.M., Rybakov V.B., Kutovoi S.A., Kuz’min O.V., Panyutin V.L. Morphotropic series of LnSc3(BO3)4 compounds. Crystallogr. Rep. 2000; 45(6): 910-915.

18. Reynolds T.A. Synthetic, structural, and spectroscopic investigations of acentric laser hosts and ionic optical converters: PhD thesis. Oregon State University, 1992.

19. Rybakov V.B., Kuzmicheva G.M., Zharikov E.V., Ageev A.Y., Kutovoi S.A., Kuz'min O.V. Crystal structure of NdSc3(BO3)4. Russ. J. Inorg. Chem. 1997; 41(10): 1594-1601.

20. Klimin S.A., Fausti D., Meetsma A., Bezmaternykh L.N., van Loosdrecht P.H.M., Palstra T.T.M. Evidence for differentiation in the ironhelicoidal chain in GdFe3(BO3)4. Acta Cryst. B. 2005; 61(5): 481-485.

21. Beregi E., Watterich A., Madarász J., Tóth M., Polgár K. X-ray diffraction and FTIR spectroscopy of heat treated R2O3:3Ga2O3:4B2O3 systems. J. Cryst. Growth. 2002; 237: 874-878.

22. Hinatsu Y., Doi Y., Ito K., Wakeshima M., Alemi A. Magnetic and calorimetric studies on rare-earth iron borates LnFe3(BO3)4 (Ln = Y, La–Nd, Sm–Ho). J. Solid State Chem. 2003; 172(2): 438-445.

23. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976; A32(6): 751-767.

24. Kuz'micheva G.M. Some aspects of the applied crystal chemistry. Moscow: MIREA Publ., 2016. 286 p. (in Russ.)

25. Fedorova M.V., Kononova N.G., Kokh A.E., Shevchenko V.S. Growth of MBO3 (M = La, Y, Sc) and LaSc3(BO3)4 crystals from LiBO2–LiF fluxes. Inorg. Mater. 2013; 49(5): 482-486.

26. Li Y., Aka G., Kahn Harari A., Vivien D. Phase transition, growth, and optical properties of NdxLa1–xSc3(BO3)4 crystals. J. Mater. Res. 2001; 16( 1): 38-44.

27. Ye N., Stone-Sundberg J.L., Hruschka M.A., Aka G., Kong W., Keszler D.A. Nonlinear optical crystal YxLayScz(BO3)4 (x + y + z = 4). Chem. Mater. 2005; 17: 2687-2692.

28. He M., Wang G., Lin Z., Chen W., Lu S., Wu Q. Structure of medium temperature phase β-LaSc3(BO3)4 crystal. Mat. Res. Innovat. 1999; 2: 345-348.

29. Durmanov S.T., Kuzmin O.V., Kuz’micheva G.M., Kutovoi S.A., Martynov A.A., Nesynov E.K., PanyutinV.L., RudnitskyYu.P., Smirnov G.V., Hait V.L., Chizhikov V.I. Binary rare-earth scandium borates for diode-pumped lasers. Opt. Mater. 2001; 18: 243-284.

30. Magunov I.R., Voevudskaya S.V., Zhirnova A.P., Zhikhareva E.A., Efrysushina N.P. Synthesis and properties of scandium and rare-earth (Ce group) double borates. Izv. Akad. Nauk SSSR. Ser. Neorg. Mater. 1985; 21(9): 1532-1534 (in Russ.) [Inorg. Mater. 1985; 21: 1337-1341].

31. Urusov V.S., Eremin N.N. Crystal chemistry: a short course. Moscow: Moscow State University Publ., 2010. 254 р. (in Russ.)

32. Verma A., Krishn P. Polymorphism and polytypism in crystals. Moscow: Mir Publ., 1969. 274 p. (in Russ.)

33. Dornberger-Schiff K. Grundzüge einer Theorie von OD-Strukturen aus Schichten. Abh. Deutsch. Akad. Wiss. Berlin. 1964. B. 3. S. 1-107.

34. Shtukenberg A.G., Punin Yu.O., Frank-Kamenetskaya O.V. The kinetic ordering and growth dissymmetrisation in crystalline solid solutions. Russ. Chem. Rev. 2006; 75: 1083-1106.


For citation:


Kaurova I.A., Gorshkov D.M., Kuz'micheva G.M., Rybakov V.B. COMPOSITION AND STRUCTURE OF THE HUNTITE-FAMILY COMPOUNDS. Fine Chemical Technologies. 2018;13(6):42-51. (In Russ.) https://doi.org/10.32362/2410-6593-2018-13-6-42-51

Views: 143


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)