Fine Chemical Technologies

Advanced search

Microfluidic method as a promising technique for synthesizing antimicrobial compounds

Full Text:


Objectives. The study aimed to analyze the current antiseptics and disinfectants, explore the possibility of synthesizing various antiseptics including oligohexamethylene guanidine hydrochloride (OHMG-HC) using microfluidic technology, and investigate the main synthesis parameters affecting the properties of the resulting product.

Methods. This article presented a review of literature sources associated with investigations of antimicrobial resistance, the uses of agents based on polyhexamethylene guanidine hydrochloride, oligohexamethylene guanidine hydrochloride, and other salts, obained using modern synthesis technologies with microreactors.

Results. The relevance of developing production technologies for the “OHMG-HC branched” substance was determined. The microfluidic method for the synthesis of polymers, and its application prospects for obtaining the target substance were compared with the existing methods. Advantages of the microfluidic method were indicated.

Conclusions. Microreactor technologies allow for more accurate control of the conditions of the polycondensation reaction of the starting monomers and increase the yield and selectivity of the oligomers obtained, leading to an increase in the product purity and process efficiency, in contrast with other known methods. The use of microreactor technologies for the synthesis of branched oligohexamethylene guanidine hydrochloride products is a promising strategy.

About the Author

A. С. Ha
Ho Chi Minh City University of Technology (HCMUT); Vietnam National University Ho Chi Minh City (VNU-HCM)
Viet Nam

Anh C. Ha - PhD, Dr. Sci. in Chemical Engineering, Faculty of Chemical Engineering, Scopus Author ID 56485522100

268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City
Linh Trung Ward, Thu Duc District, Ho Chi Minh City

Competing Interests:

The author declares no conflicts of interests


1. Tsimmerman Ya.S. The problem of growing resistance of microorganisms to antibiotic therapy and prospects for Helicobacter pylori eradication. Klinicheskaya meditsina = Clinical Medicine (Russ. J.). 2013;91(6):14–20 (in Russ.).

2. Cabeen M.T., Jacobs-Wagner C. Bacterial cell shape. Nat. Rev. Microbiol. 2005;3(8):601–610.

3. Silhavy T.J., Kahne D., Walker S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010;2:a000414.

4. Russell A.D. Bacterial Spores and Chemical Sporicidal Agents. Clin. Microbial. Rev. Apr. 1990;3(2):99–119.

5. Bowler P.G. Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. J. Wound Care. 2018;27(5):273–277.

6. Stewart P.S., Franklin M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008;6(3):199–210.

7. Kvashnina D.V., Kovalishena O.V. Prevalence of microbial resistance to chlorhexidine: a systematic review and analysis of regional monitoring. Fundamental’naya i klinicheskaya meditsina = Fundamental and Clinical Medicine. 2018;3(1):63–71 (in Russ.).

8. Akimkin V.G., Tutel’Yan A.V. Current directions of scientific researches in the field of infections, associated with the medical care, at the present stage. Zdorov’e naseleniya i sreda obitaniya – ZNiSO = Public Health and Life Environment – PH&LE. 2018;(4):46–50 (in Russ.).

9. Kultanova E.B., Turmukhambetova A.A., Kalieva D.K., Mukhamedzhan G.B. Nosocomial infections: a public health problem (literature review). Vestnik Kazakhskogo Natsional’nogo meditsinskogo universiteta (Vestnik KazNMU). 2018;(1):46–49 (in Russ.).

10. Exner M., et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg. Infect. Control. 2017;12:Doc.05.

11. Privol’nev V.V., Zubareva N.A., Karakulina E.V. Topical therapy of wound infections: antiseptics or antibiotics? Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy. 2017;19(2):134–137 (in Russ.).

12. Tommasi R., Brown D.G., Walkup G.K., Manchester J.I., Miller A.A. ESKAPEing the labyrinth of antibacterial discovery. Nat. Rev. Drug Discov. 2015;14(8):529–542.

13. Trombetta D., Saija A., Bisignano G., Arena S., Caruso S., Mazzanti G., Uccella N., Castelli F. Study on the Mechanisms of the Antibacterial Action of Some Plant α-βunsaturated Aldehydes. Letters in Applied Microbiology. 2002;35:285–290.

14. Bakhir V.M., Vtorenko V.I., Leonov B.I., et al. Efficiency and safety of chemical solutions for disinfection, presterilization cleaning and sterilization. Dezinfektsionnoe delo = Disinfection Affairs. 2003;(1):29–36 (in Russ.).

15. Larson E.L., Morton H.E. Alcohols. In: Block S.S. (Ed.). Disinfection, Sterilization, and Preservation. 4th Ed. Philadelphia, PA: Lea and Febiger; 1991, pp. 191–203.

16. Aronson J.K. (Ed.). Phenols. In: Meyler’s Side Effects of Drugs. 16th Ed. Elsevier; 2016, pp. 688–692. ISBN 9780444537164.

17. Lobanov S.M. Evaluation of effectiveness of chlorinecontaining disinfectant in case of disinfection of poultry farm objects. Problemy veterinarnoi sanitarii, gigieny i ekologii = Problems of Veterinary Sanitation, Hygiene and Ecology. 2011;2(6):49–51 (in Russ.).

18. Jumbelic M.I., Hanzlick R., Cohle S. Alkylamine antihistamine toxicity and review of Pediatric Toxicology Registry of the National Association of Medical Examiners. Report 4: Alkylamines. Am J Forensic Med Pathol. 1997 Mar;18(1):65–9.

19. Popov N.I., Volkovskii G.D., Michko S.A., Griganova N.V. Bianol test results. Veterinariya = Veterinary. 2005;(2):12–14 (in Russ.).

20. Khudyakov, A.A. Effective disinfection and selection of a disinfectant. Veterinariya = Veterinary. 2010;(2):18–22 (in Russ.).

21. Shestopalov N.V., Panteleeva L.G., Sokolova N.F., Abramova I.M., Lukichev S.P. Federal’nye klinicheskie rekomendatsii po vyboru khimicheskikh sredstv dezinfektsii i sterilizatsii dlya ispol’zovaniya v meditsinskikh organizatsiyakh (Federal clinical guidelines for the selection of disinfection and sterilization chemicals for use in medical organizations). Moscow: 2015. 67 р. (in Russ.).

22. Gotovskii D.G., Fomchenko I.V. Evaluation of the toxicity and biocidal properties of the disinfectant “Estadez with 3–2–1.” Uchenye zapiski UO VGAVM. 2012;48(1):18–22 (in Russ.).

23. Morozova N.S., Korzhenevskii S.V., Telenev A.V. The disinfection of microorganisms in the problem of nosocomial infections. Vestnik assotsiatsii. 2001;(3):15–17 (in Russ.).

24. Zhou Z., Wei D., Lu Y. Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria. Biotechnol. Appl. Biochem. 2015;62(2):268–274.

25. Lysytsya A., Mandygra M. The Antiviral Action of Polyhexamethylene Guanidine Derivatives. J. Life Sci. 2014;8(1):22–26.

26. Shandala M.G., Fedorova L.S., Pankratova G.P., Efimov K.M., Dityuk A.I., Snezhko A.G., Bogdanov A.I. Hygienic substantiation of the development and use of polyguanidines as antimicrobial prophylactic agents means of the innovative class. Gigiena i sanitariya = Hygiene and Sanitation. 2015;94(8):77–81 (in Russ.).

27. Belushkina N.N., Ivanov A.A., Krjukov L.N., Krjukova L.Ju., Moskaleva E.Ju., Pal’tsev M.A., Posypanova G.A., Severin E.S., Severin S.E., Torgun I.N., Fel’dman N.B., Khomjakov Ju.N. 2,2,6,6-tetrakis-(trifluoromethyl)-4ethylamino-5,6-dihydro-1,3,5-oxadiazine (synthazin), method of its synthesis and pharmaceutical composition based on thereof: Pat. 2203892 RF. Publ. 10.05.2003. (in Russ.).

28. Ivanov I.S., Shatalov D.O., Kedik S.A., Sedishev I.P., Beliakov S.V., Trachuk K.N., Komarova V.V. An effective method for preparation of high purity oligohexamethylene guanidine salts. Fine Chemical Technologies. 2020;15(3):31–38.

29. Vointseva I.I. Poliguanidiny – dezinfektsionnye sredstva i polifunktsional’nye dobavki v kompozitsionnye materialy (Polyguanidines are disinfectants and multifunctional additives in composite materials). Moscow: LKMpress; 2009. 303 p. (in Russ.). ISBN 978-5-9901286-2-0

30. Gembitskii P.A., Vointseva I.I. Polimernyi biotsidnyi preparat poligeksametilenguanidin (Polymer biocidal preparation polyhexamethylene guanidine). Zaporozh’e: Poligraf; 1998. 42 p. (in Russ.).

31. Arzamastsev A.P., Popkov V.A., Krasnyuk I.I., Matyushina G.P., Zadereiko L.V., Abrikosova Yu.A. Foaming composition for antiseptic treatment of the skin: Pat. 2003102506 RF. Publ. 10.08.2004. (in Russ.).

32. Moksunov V.V., Shestopalov N.V. Skin disinfection treatment agent: Pat. 2521323 RF. Publ. 27.06.2014. (in Russ.).

33. Kukharenko O., Bardeau J.F., Zaets I., Ovcharenko L., et al. Promising low cost antimicrobial composite material based on bacterial cellulose and polyhexamethylene guanidine hydrochloride. Eur. Polym. J. 2014;60:247–254.

34. Wangkui W., Yin W. Pharmaceutical formula and preparation method of polyhexamethylene guanidine hydrochloride (PHMG): Pat. CN103705536A China. Publ. 09.04.2014.

35. Koffi-Nevry R., et al. Assessment of the antifungal activities of polyhexamethylene-guanidine hydrochloride (PHMGH)-based disinfectant against fungi isolated from papaya (Carica papaya L.) fruit. African J. Microbiol. Res. 2011;5(24):4162–4169.

36. Oulé M.K., Quinn K., Dickman M., Bernier A.M., Rondeau S., Moissac D.D., Boisvert A., Diop L. Akwaton, polyhexamethylene-guanidine hydrochloride-based sporicidal disinfectant: a novel tool to fight bacterial spores and nosocomial infections. J. Med. Microbiol. 2012;61(10):1421–1427.

37. Dilamian M., Montazer M., Masoumi J. Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride. Carbohydrate Polymers. 2013;94(1):364–371.

38. Vitt A., Sofrata A., Slizen V., et al. Antimicrobial activity of polyhexamethylene guanidine phosphate in comparison to chlorhexidine using the quantitative suspension method. Ann. Clin. Microbiol. Antimicrob. 2015;14:36.

39. Vitt A., Gustafsson A., Ramberg P., Slizen V., Kazeko L. A., Buhlin K. Polyhexamethylene guanidine phosphate irrigation as anadjunctive to scaling and root planing in the treatment of chronic periodontitis. Acta Odontol. Scand. 2019;77(4):290–295.

40. Sklyanova Yu.A., Ushakov R.V., Kazimirskii V.A., et al. Experimental grounding of phogutsid (anavidin) application in stomatology. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra SO RAMN = Bul. VSNTS SB RAMS. 2006;4(50):344–346 (in Russ.).

41. Kha K.A., Grammatikova N.E., Vasilenko I.A., Kedik S.A. Comparative in vitro Antibacterial Activity of Polyhexamethylene Guanidine Hydrochloride and Polyhexamethylene Guanidine Succinate. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy. 2013;58(1–2):3–7 (in Russ.).

42. Guogang V. Polyhexamethylene guanidine medicine for treating stomach disease and preparation method and application thereof: Pat. CN105726491A China. Publ. 06.07.2016.

43. Khallyeva O.K., Dobysh V.A., Koktysh N.V., Belyasova N.A., Tarasevich V.A. Borne polyhexamethyleneguanidine salts. Uspekhi v khimii i khimicheskoi tekhnologii = Advances in Chemistry and Chemical Technology. 2016;30(1):11–13 (in Russ.).

44. Dobysh V.A., Koktysh N.V., Belyasova N.A., Kornei V.V. Study of structure and properties of the triple polymer-metal complex chitosan—Cu(II)—polyhexamethyleneguanidine. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2017;7(1):31–38 (in Russ.).

45. Ivanov I.S., Shatalov D.O., Kedik S.A., Sedishev I.P., Grammatikova N.E., Aidakova A.V., Trachuk K.N., Yazykova E.I. Study of the effect of the pharmaceutical substance branched oligohexamethylene guanidine hydrosuccinate in relation to microorganisms. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy. 2019;64(11–12):8–15 (in Russ.).

46. Kedik S.A., Sedishev I.P., Panov A.V., Zhavoronok E.S., Kha K.A. Guanidine derivative based branched oligomers and disinfectant containing said oligomers: Pat. RF 2443684C1. Publ. 27.02.2012. (in Russ.).

47. Safronov G.A., Gembitskii P.A., Kuznetsov O.Yu., Klyuev V.G., Kalinina T.A., Rodionov A.V. Method of producing disinfecting agent: Pat. SU-1616898 USSS. Publ. 30.12.1990.

48. Schmidt O. Method for producing polyhexamethylene guanidine: Pat. WO1999054291A1. Publ. 28.10.1991.

49. Popovkin V.V., Glukhov I.S., Antonov M.I. Method of producing polyhexamethylene guanidine hydrochloride: Pat. RF 2489452C1. Publ. 10.08.2013. (in Russ.).

50. Wei D., Ma Q., Guan Y., Hu F., Zheng A., Zhang X., Teng Z., Jiang H. Structural characterization and antibacterial activity of oligoguanidine (polyhexamethylene guanidine hydrochloride). Mat. Sci. Eng.: C. 2009;29(6):1776–1780.

51. Terry S.C. A gas chromatography system fabricated on a silicon wafer using integrated circuit technology. PhD. Dissertation: Stanford University. ProQuest Dissertations Publishing; 1975.

52. Manz A., Graber N., Widmer H.M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B. 1990;1(1–6):244–248.

53. Srinivasan R., et al. Chemical performance and high temperature characterization of micromachined chemical reactors. In: Proceedings of International Solid State Sensors and Actuators Conference (Transducers 1997). 1997;1:163–166.

54. Ehrfeld W., Golbig K., Hessel V., Löw, H. & Richter T. Characterization of mixing in micromixers by a test reaction: Single mixing units and mixer arrays. Ind. Eng. Chem. Res. 1999;38(3):1075–1082.

55. Stone H.A., Stroock A.D., Ajdari A. Engineering flows in small devices. Microfluidics toward a lab-on-a chip. Annu. Rev. Fluid Mech. 2004;36(1):381–411.

56. Reis M.H., Leibfarth F.A., Pitet LM. Polymerizations in Continuous Flow: Recent Advances in the Synthesis of Diverse Polymeric Materials. ACS Macro Lett. 2020;9(1):123−133.

57. Ivanov I.S., Kedik S.A., Shatalov D.O., et al. The Prospects of Application of Microfluidics for Synthesis of Compounds from the Alkylene Guanidine Series. Polym. Sci. Ser. D. 2021;14(2):305–311.

58. Pihl J., Karlsson M., Chiu D.T. Microfluidic technologies in drug discovery. Drug Discov. Today. 2005;10(20):1377–1383.

59. Schwalbe T., Autze V., Wille G. Chemical synthesis in microreactors. CHIMIA. Int. J. Chem. 2002;56(11):636–646.

60. Elvira K.S., Casadevall i Solvas X., Wootton R.C.R., DeMello A.J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nature chemistry. 2013;5:905–915.

61. Lee C-C., et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science. 2005;310(5755):1793–1796.

62. Asai T., et al. Switching reaction pathways of benzo[b] thiophen-3-yllithium and benzo[b]furan-3-yllithium based on high-resolution residence-time and temperature control in a flow microreactor. Chem. Lett. 2011;40(4):393–395.

63. Illg T., Hessel V., Lob P., Schouten J.C. Continuous synthesis of tert-butyl peroxypivalate using a single-channel microreactor equipped with orifices as emulsification units. ChemSusChem. 2011;4(3):392–398.

64. Vörös A., Baán Z., Mizsey P., Finta Z. Formation of Aromatic Amidoximes with Hydroxylamine using Microreactor Technology. Org. Proc. Res. Dev. 2012;16(11):1717−1726.

65. Zhang X., Stefanick S., Villani F.J. Application of Microreactor Technology in Process Development. Org. Proc. Res. Dev. 2004;8(3):455−460.

66. Marre S., Roïg Y., Aymonier C. Supercritical microfluidics: Opportunities in flow-through chemistry and materials science. J. Supercrit. Fluids. 2012;66:251–264.

67. Narkevich I.A., Tarasov I.N., Golant Z.M., Alekhin A.V. Modern technologies for the synthesis of pharmaceutical substances: way to high-efficiency drug production. Pharm. Chem. J. 2016;49(11):760–764. [Original Russian Text: Narkevich I.A., Tarasov I.N., Golant Z.M., Alekhin A.V. Modern technologies for the synthesis of pharmaceutical substances: way to high-efficiency drug production. Khimiko-Farmatsevticheskii Zhurnal 2015;49(11):36–40.]

68. Bally F., Serra C. A., Brochon C., Hadziioannou G. Synthesis of Branched Polymers under ContinuousFlow Microprocess: An Improvement of the Control of Macromolecular Architectures. Macromol. Rapid Commun. 2011;32(22):1820−1825.

69. Visaveliya N., Köhler J.M. Role of Self-Polarization in a Single-Step Controlled Synthesis of Linear and Branched Polymer Nanoparticles. Macromol. Chem. Phys. 2015;216(11):1212−1219.

70. Kuesters C.F., Stengel B.F., Benzinger W., Brandner J.J. Microprocessing for preparing a polycondensate: Pat. US9187574B2 Publ. 17.11.2015.

71. Kockmann N., Gottsponer M., Zimmermann B., Roberge D.M. Enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production. Chem. Eur. J. 2008;14(25):7470–7477.

72. Fletcher P., Haswell S. Downsizing synthesis. Chem. Brit. 1999;35(11):38–41.

73. Roberge D.M., Durcy L., Bieler N., Cretton P., Zimmermann B. Microreactor technology: A revolution for the fine chemical and pharmaceutical industries? Chem. Eng. Technol. 2005;28(3):318–322.

74. Šalić A., Tušek A., Zelić, B. Application of microreactors in medicine and biomedicine. J. Appl. Biomed. 2012;10(3):137–153.

75. Wang Y., Chen Z., Bian F., Shang L., Zhu K., Zhao Y. Advances of droplet-based microfluidics in drug discovery. Expert Opin. Drug Discov. 2020;15(8):969–979.

76. Bogdan A.R., Poe S.L., Kubis D.C., Broadwater S.J., McQuade D.T. The Continuous‐Flow Synthesis of Ibuprofen. Angew. Chem. 2009;121(45):8699–8702.

77. Snead D.R., Jamison T.F. A three-minute synthesis and purification of ibuprofen: pushing the limits of continuousflow processing. Angew. Chem. 2014;54(3):983–987.

78. Pinho V.D., Gutmann B., Miranda L.S.M., de Souza R.O.M.A., Kappe C.O. Continuous Flow Synthesis of α-Halo Ketones: Essential Building Blocks of Antiretroviral Agents. J. Org. Chem. 2014;79(4):1555–1562.

79. Poltavets Yu.I. Method for obtaining polymeric antitumor particles in flow microreactor and lyophilisate based on them: Pat. RF 2681933C1. Publ. 03.14.2019. (in Russ.).

Supplementary files

1. Polyguanidine derivatives formed during synthesis: A, B, C (linear), D (branching), E, F (cyclic), and G (cyclic branching).
Type Исследовательские инструменты
View (243KB)    
Indexing metadata
  • The article presented a review of literature sources associated with investigations of antimicrobial resistance, the uses of agents based on polyhexamethylene guanidine hydrochloride, oligohexamethylene guanidine hydrochloride, and other salts, obtained using modern synthesis technologies with microreactors.
  • Microreactor technologies allow for more accurate control of the conditions of the polycondensation reaction of the starting monomers and increase the yield and selectivity of the oligomers obtained, leading to an increase in the product purity and process efficiency, in contrast with other known methods.


For citations:

Ha A.С. Microfluidic method as a promising technique for synthesizing antimicrobial compounds. Fine Chemical Technologies. 2021;16(6):465-475.

Views: 593

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)