Preview

Fine Chemical Technologies

Advanced search

Application of pulse current for dissolution of heat-resistant GS32-VI alloy

https://doi.org/10.32362/2410-6593-2021-16-5-438-447

Full Text:

Abstract

Objectives. To identify the regularities of electrochemical processing of the heat-resistant GS32-VI alloy in a sulfuric acid electrolyte with a concentration of 100 g/dm3 under the action of a pulsed current in a pulsed mode.
Methods. Using the electrochemical technological complex EHK-1012 (developed by IP Tetran) and a non-compensatory method of measuring potential, polarization and depolarization curves with a change in pulse duration and a pause between them were recorded. The current pulses had an amplitude ranging from 0 to 3.5 A (when recording the polarization and depolarization curves), pulse durations ranging from 200 to 1200 ms, and a pause (delay) between pulses ranging from 50 to 500 ms. There were no reverse current pulses.
Results. The parameters of the current program that provide the maximum values of the alloy dissolution rate and current output were determined: with a current pulse amplitude of 2 A, a current pulse duration of 500 ms, and a pause duration between pulses of 250 ms, the maximum dissolution rate of the alloy is 0.048 g/h·cm2, while the current output for nickel is 61.6% with an anode area of 10 cm2. The basic technological scheme for processing the heat-resistant GS32-VI alloy, which includes anodic alloy dissolution in a pulsed mode, is proposed.
Conclusions. Electrochemical dissolution of GS32-VI alloy under pulsed current action results in an optimal dissolution rate ratio of the alloy components, ensuring the production of a cathode precipitate with a total nickel and cobalt content of 97.5%.

About the Authors

O. V. Chernyshova
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

 Cand. Sci. (Eng.), Associate Professor, K.A. Bolshakov Department of Chemistry and Technology of Rare Elements,

86, Vernadskogo pr., Moscow, 119571, Russia

Scopus Author ID 8961258100



T. B. Yelemessov
Institute of High Technologies
Kazakhstan

 Junior Researcher, Laboratory of New Equipment and Materials

168, Bogenbai Batyr st., Almaty, 050012, Republic of Kazakhstan



D. V. Drobot
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

 Dr. Sci. (Chem.), Professor, K.A. Bolshakov Department of Chemistry and Technology of Rare Elements

86, Vernadskogo pr., Moscow, 119571, Russia

Scopus Author ID 35580931100, Researcher ID AAR-3711-2019



References

1. Lutz L.J., Parker S.A., Stephenson J.B. Recycling of Contaminated Superalloy Scrap via Electrochemical Processing. TMS Аnnual. Meeting. 1993: 1211–1220.

2. Prasad V.S., Rao S.A., Prakash U., et al. Recycling of Superalloy Scrap through Electro Slag Remelting. ISIJ International. 1996;36(12):1459–1464. https://doi.org/10.2355/isijinternational.36.1459

3. Rao S.R. (Ed.). Resource Recovery and Recycling from Metallurgical Wastes. V. 7. Elsevier Science; 2006. 580 p. https://doi.org/10.1016/s0713-2743(06)x8083-2

4. Sibley S.F. (Ed.). Flow studies for recycling metal commodities in the United States. Reston, Virginia: US Geological Survey; 2004. V. 1196. https://doi.org/10.3133/cir1196

5. Worrell E., Reuter M.A. Handbook of Recycling: State of the art for Practitioners, Analysts, and Scientists. Elsevier; 2014. 600 p.

6. Palant A.A., Bryukvin V.A., Levin A.M., Levchuk O.M. Combined electrochemical processing of the wastes of nickel superalloys containing rhenium, tungsten, tantalum, niobium and other precious metals. Russ. Metall. 2014;2014(1):20–22. https://doi.org/10.1134/S0036029514010108

7. [Original Russian Text: Palant A.A., Bryukvin V.A., Levin A.M., Levchuk O.M. Combined electrochemical processing of the wastes of nickel superalloys containing rhenium, tungsten, tantalum, niobium and other precious metals. Metally. 2014;(1):25–27 (in Russ.).]

8. Palant AA, Bryukvin VA, Levchuk OM, Palant AV, Levin AM. Method of electrochemical treatment of heatproof nickel alloy metal wastes that contain rhenium: Pat. 2401312 RF. Publ. 10.10.2010.

9. Stoller V., Olbrich A., Meese-Marktscheffel J., et al. Process for electrochemical decomposition of superalloys: Pat. 10155791 DE. Publ. 17.07.2003.

10. Krynitz U., Olbrich A., Kummer W., Schloh M. Method for the decomposition and recovery of metallic constituents from superalloys: Pat. 5776329 USA. Publ. 07.07.1998.

11. Stoller V., Olbrich A., Meese-Marktscheffel J., et al. Electrochemical dissolution process for disintegrating superalloy scraps: Pat. 1312686 EP. Publ. 16.01.2008.

12. Srivastava R., Kim M., Lee J., et al. Resource recycling of superalloys and hydrometallurgical challenges. J. Mate. Sci. 2014;49(14):4671–4686. https://doi.org/10.1007/s10853-014-8219-y

13. Shipachev V.A. Some Processing Techniques for Rhenium Isolation and Purification from Refractory Alloys. Khimiya v interesakh ustoichivogo razvitiya = Chemistry for Sustainable Development. 2012;20(3):323–326.

14. Palant A.A., Bryukvin V.A., Levchuk O.M., et al. Complex electrochemical processing of metallic rheniumcontaining wastes of heat-temperature nickel alloy in sulphate electrolytes. Electrometallurgiya = Electrometallurgy. 2010;(7):29–33 (in Russ.).

15. Petrova A.M., Kasikov A.G., Gromov P.B., Kalinnikov V.T. Rhenium recovery from nickel-based complex heat-resistant alloys. Tsvetnye metally = Non-Ferrous Metals. 2011;(11):39–43 (in Russ.).

16. Chernyshova O.V., Drobot D.V., Chernyshov V.I., Makhon᾽ko M.V. Method of nickel recovery at electrochemical processing of heat-resistant nickel alloys: Pat. 2542182 RF. Publ. 20.02.2015 (in Russ.).

17. Agapova L. Ya., Abisheva Z. S., Kilibaeva S. K., Yakhiyaeva Zh. E. Electrochemical processing of technogenic wastes of rhenium-containing heat-resistant nickel alloys in sulfuric acid solutions. Tsvetnye Metally. 2017;(10):69–74 (in Russ.). https://doi.org/10.17580/tsm.2017.10.08

18. Agapova L.Y., Kilibayeva S.K., Abisheva Z.S., Sharipova A.S. Complex electrochemical processing of technogenic wastes of rhenium-containing heat-resistant nickel alloys. Non-ferrous metals. 2020;(1):24–30. https://doi.org/10.17580/nfm.2020.01.04

19. Frolova I.I., Solov’eva N.D., Rybalkina I.P., Popova N.E. Use of non-stationary modes in electrodeposition of nickel coatings. Perspektivnye materialy. 2015;(7):58–63 (in Russ.).

20. Vypirailo S.Yu., Kireeva S.N., Kireev S.Yu. Electrochemical deposition of tin coatings using pulsed electrolysis. Vestnik Penz. Gos. Un-ta = Vestnik of Penza State University. 2015;3(11):128–132 (in Russ.).

21. Mikhedova E.V., Chernik A.A., Zharskii I.M., Yaskel’chik V.V. Electrochemical deposition of yellow brass under pulse electrolysis conditions. Proceeding of the National Academy of Sciences of Belarus. Chemical Series. 2014;(3):48–52 (in Russ.).

22. Spanou S., Pavlatou E.A. Pulse electrodeposition of Ni/nano-TiO2 composites: effect of pulse frequency on deposits properties. J. Appl. Electrochem. 2010;40(7):1325–1336. https://doi.org/10.1007/s10800-010-0080-3

23. Seza A., Jafarian H.R., Hasheminiasari M., Aliofkhazraei M. Effect of duty cycle on corrosion resistance and mechanical properties of tertiary Al2O3/Y2O3/Graphene pulsed electrodeposited Ni-based nano-composite. Procedia Mater. Sci. 2015;11:576–582. https://doi.org/10.1016/j.mspro.2015.11.077

24. Atourki L., Bouabid K., Ihalane E., L. Alahyane L., et al. Pulse electrodeposition of ZnO for thin absorber solar cells. Energy Procedia. 2014;50:376–382. https://doi.org/10.1016/j.egypro.2014.06.045

25. Xu Z., Jia L., Zhu D., Qu N., et al. Electrochemical machining of burn-resistant Ti40 alloy. Chinese Journal of Aeronautics (CJA). 2015;28(4):1263–1272. https://doi.org/10.1016/j.cja.2015.05.007

26. Vazquez-Arenas J., Treeratanaphitak T., Pritzker M. Formation of Co–Ni alloy coatings under direct current, pulse current and pulse-reverse plating conditions. ELECTROCHIM. ACTA. 2012;62:63–72. https://doi.org/10.1016/j.electacta.2011.11.085

27. Xia F., Xu H., Liu C., Wang J., et al. Microstructures of Ni–AlN composite coatings prepared by pulse electrodeposition technology. Appl. Surf. Sci. 2013;271:7–11. https://doi.org/10.1016/j.apsusc.2012.12.064

28. Chen Y.l., Chen P., Lin H., Li X. Effect of Selected Process Parameters on Efficiency Enhancement of Electrochemical Etching and Polishing of Tungsten under Forced Convection. Int. J. Electrochem. Sci. 2020;15(11):10955–10970. http://doi.org/10.20964/2020.11.72

29. Gaidarenko O.V., Chernyshov V.I., Chernyshov Yu.I. Method for measuring potential of live main electrode of electrochemical: Pat. 2106620 RF. Publ. 10.03.1998 (in Russ.).

30. Kablov E.N. Physicochemical and technological features of production of high-temperature rhenium containing alloys. Moscow University Bulletin. 2005;60(3):16–28.

31. Palant A.A., Troshkina I.D., Chekmarev A.M. Metallurgiya reniya (Metallurgy of rhenium). Moscow: Nauka; 2007. 298 p. (in Russ.). ISBN 5-02-034116-9


Supplementary files

1. Polarization and depolarization curves of GS32-VI alloy dissolution in the sulfuric acid electrolyte at a concentration of 100 g/dm3, 500 ms pulse duration, and a delay of 250 ms.
Subject
Type Research Instrument
View (164KB)    
Indexing metadata
2. This is to certify that the paper titled Application of pulse current for dissolution of heat-resistant GS32-VI alloy commissioned to us by Оxana V. Chernyshova, Тurar B. Yelemessov, Dmitry V. Drobot has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc.
Subject CERTIFICATE OF EDITING
Type Other
View (478KB)    
Indexing metadata
  • Processing of metal-containing secondary raw materials using the electrochemical technological complex EHK-1012 (developed by IP Tetran), which implements various current programs, allows products of a given composition and quality to be obtained.
  • A basic technological scheme for processing GS32-VI alloy has been developed, ensuring the production of a cathode product with a total nickel and cobalt content of 97.5% in one stage.

Review

For citations:


Chernyshova O.V., Yelemessov T.B., Drobot D.V. Application of pulse current for dissolution of heat-resistant GS32-VI alloy. Fine Chemical Technologies. 2021;16(5):438-447. https://doi.org/10.32362/2410-6593-2021-16-5-438-447

Views: 232


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)