Fine Chemical Technologies

Advanced search


Full Text:


One of the harmful factors of the interaction of microorganisms with the technosphere is the formation of biofilms on the surface of various products. Steady colonies of bacteria ensure a stable contamination of the handling medium of the product, and their release is a cause of biodestructive processes in materials. In many cases, single or even regular antimicrobial treatment does not lead to complete suppression of colony formation. Therefore, today the most demanded methods of preventing biofilms formation involve the creation of materials that are resistant to colonization by bacteria. Since bacteria cells directly interact with the surface of the material, it is the surface that should have antibacterial properties. In the review, various methods of preventing the formation of biofilms by the example of polymeric materials are considered. The main attention is paid to the methods of creating antibacterial surfaces, which in various ways prevent the formation of biofilms. In accordance with the world practice, all antibacterial surfaces are divided into four types: releasing, contact-active, repelling and self-polishing. The advantages and disadvantages of each type of antibacterial surfaces, their existing limitations in use and prospects for further development are noted. Information on the compatibility of individual types of surfaces is also noted in the literature.

About the Authors

L. R. Lyusova
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

D.Sc. (Engineering), Professor, Head of the F.F. Koshelev Chair of Chemistry and Technology of Elastomers Processing

86, Vernadskogo pr., Moscow 119571,Russia

А. А. Ilyin
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Ph.D. (Engineering), Senior Lecturer of the F.F. Koshelev Chair of Chemistry and Technology of Elastomers Processing

86, Vernadskogo pr., Moscow 119571, Russia

L. S. Shibryaeva
N.M. Emanuel Institute of Biochemical Physics the Russian Academy of Sciences; Federal Scientific Agroengineering Center VIM
Russian Federation

D.Sc. (Chemistry), Professor, Leading Researcher

4, Kosygin St., Moscow 119334, Russia

Leading Researcher

5, 1st Institutskiy driveway, Moscow 109428, Russia


1. Lengeler J., Drews G., Schlegel H. Biology of the Prokaryotes. Stuttgart: Georg Thieme Verlag, 2009. 984 p.

2. Taylor D.J., Green N.P.O., Stout W., Soper R. Biological Science. New Dehli: Cambridge University Press, 2008. 992 p.

3. Hatt J.K., Rather P.N. Role of bacterial biofilms in urinary tract infections. Curr. Topics in Microbiol. and Immunol. 2008; 322: 163-192.

4. Netrusov A.I., Kotova I.B. Microbiology. University course. Moscow: "Academiya" Publishing Center, 2012. 384 p. (in Russ.)

5. Pozdeev O.K. Medical microbiology. Moscow: GEOTAR-Media Publ., 2010. 768 p. (in Russ.)

6. Zverev V.V., Boychenko M.N. Medical microbiology, virology and immunology: in 2 volumes.V. 1. Moscow: GEOTAR-Media Publ., 2010. 448 p. (in Russ.)

7. Velikanov N.L., Koryagin S. I., Naumov V.A. Reduction of scale deposit in networks of water and sewage. Tekhniko-tekhnologicheskie problemy servisa (Technical and Technological Problems of Service). 2015; 2(32): 20-23. (in Russ.)

8. Sautkina T.N., Kalyakin A.M., Chesnokova E.V., Khurchakova A.A. Qualitative analysis of fouling processes of cold water pipelines. Nauchnye trudy SWorld (Scientific Works of SWorld). 2013; 35(4): 49-51. (in Russ.)

9. Trufakina L.M. Polymer composites as a way to improve environmental and technological safety of water facilities. Voda: khimiya i ekologiya (Water: Chemistry and Ecology). 2011; 9: 92-97. (in Russ.)

10. Svalova M.V., Grinko E.A., Khodova E.A. Investigation of plastic pipemicrobiological pollution by waste water based on mathematical model. Vestnik

11. IzhGTU im. M.T. Kalashnikova (Bulletin of M.T. Kalashnikov ISTU). 2013; 1(57): 143-145. (in Russ.)

12. Sidenko V.P., Kuznetsov O.V., Prikazyuk A.M. Biological fouling of floating means and ecological safety of navigation. Aktualnye problemy transportnoi meditsiny (Actual Problems of Transport Medicine). 2009; 1(15): 116-120. (in Russ.)

13. Solovyeva O.V. Midian fouling of a technical construction in the inner part of the Sevastopol Bay (the Black Sea). Morskoi biologicheskii zhurnal (Marine Biological Journal). 2016; 1(1): 64-69. (in Russ.).

14. Biering-Sorensen F. Urinary tract infection in individuals spinal cord lesion. Curr. Opin. Urol. 2002; 12: 45-49.

15. Matsumoto T., Takahashi K., Manabe N., Iwatsubo E., Kawakami Y. Urinary tract infection in neurogenic bladder. Int. Antimicrob. Agents. 2001; 17: 293-297.

16. Lisovskaya S.A., Khaldeeva E.V., Glushko N. I. The increasing importance of mold fungi as agents of secondary infections. Uspekhi medicinskoi mikologii (Mycological Progress). 2014; 12: 191-192. (in Russ.)

17. Matushevskaya E.V. Antibacterial drugs in the form of sprays for the treatment of pyodermas and dermatoses complicated with secondary infection. Vestnik dermatologii i venerologii (Bulletine of Dermatology and Venerology). 2014; 2: 60-63. (in Russ.)

18. Ranganathan V. Biofilms: Microbial cities of scientific significance. J. Microbiol. & Experiment. 2014; 1(3): 16-32.

19. Ofek I., Hasty D.L., Sharon N. Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol. and Med. Microbiol. 2003. 38(3): 181-191.

20. Cozens D., Read R.C. Anti-adhesion methods as novel therapeutics for bacterial infections. Exp. Rev. Anti-Inf. Ther. 2012; 10(12): 1457-1468.

21. Klemm P., Vejborg R.M., Hancock V. Prevention of bacterial adhesion. Appl. Microbiol. and Biotechnol. 2010; 88(2): 451-459.

22. Tiller J.C. Antimicrobial surfaces. Adv. Polym. Sci. 2011; 240: 193-217.

23. Carlet J., Aaron L., Acar J. [et al.] World alliance against antibiotic resistance: the WAAAR declaration against antibiotic resistance. Medicina Intensiva. 2015; 39(1): 34-39.

24. Rojas I.A., Slunt J.B., Grainger D.W. Polyurethane coatings release bioactive antibodies to reduce bacterial adhesion. J. Contr. Release. 2000; 63(1-2): 175-189.

25. Daugherty A.L., Mrsny R.J. Formulation and delivery issues for monoclonal antibody therapeutics. Adv. Drug Deliv. Rev. 2006; 58(5-6): 686-706.

26. Simchi A., Tamjid E., Pishbin F., Boccaccini A.R. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine: Nanotechnology, Biology and Medicine. 2011; 7(1): 22-39.

27. Wang G., Zreiqat H. Functional coatings or films for hard-tissue applications. Materials. 2010; 3(7): 3994-4050.

28. Lebeaux D., Ghigo J.-M., Beloin C. Biofilmrelated infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. and Mol. Biol. Rev. 2014; 78(3): 510-543.

29. Bennett R.F. Industrial manufacture and applications of tributyltin compounds. In: Tributyltin: Case Study of an Environmental Contaminant / ed. S.J. de Mora. Cambridge: Cambridge University Press, 1996: 21-61.

30. Siedenbiedel F., Tiller J.C. Antimicrobial polymers in solution and on surfaces: Overview and functional principles. Polymers. 2012; 4(1): 46-71.

31. Henschen J., Illergård J., Larsson P.A., Ek M., Wågberg L. Contact-active antibacterial aerogels from cellulose nanofibrils. Colloids and Surfaces B: Biointerfaces. 2016; 146: 415-422.

32. He W., Li J., Gao Y., Luo F., Tan H., Fu Q., Zhang Y., Wang K. A novel surface structure consisting of contact-active antibacterial upper-layer and antifouling sub-layer derived from gemini quaternary ammonium salt polyurethanes. Sci. Rep. 2016; 6: 32140. DOI: 10.1038/srep32140.

33. Saini S., Belgacem M.N., Missoum K., Bras J. Natural active molecule chemical grafting on the surface of microfibrillated cellulose for fabrication of contact active antimicrobial surfaces. Industrial Crops and Products. 2015; 78: 82-90.

34. Dinjaski N., García E., García J.L., Prieto M.A., Fernández-Gutiérrez M., Parra-Ruiz F.J., San Román J., Selvam S., Lehman S.M., García A.J. Phacos, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant staphylococcus aureus. Biomaterials. 2014; 35(1): 14-24.

35. Ye S., Chen Z., Majumdar P., Chisholm B., Stafslien S. Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a crosslinked poly(dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy. Langmuir: ACS J. Surf. and Colloids. 2010; 26(21): 16455-16462.

36. Kumar B., Pathak R., Gautam H.K., Mathur A., Kumar P., Sardana K. Evaluation of antimicrobial efficacy of quaternized poly[bis(2-chloroethyl)etheralt-1,3- bis[3-(dimethylamino)propyl]urea] against targeted pathogenic and multi-drug-resistant bacteria. J. BioActive and Compatible Polymers. 2016; 31(5): 467-480.

37. James N.R., Jayakrishnan A. Surface thiocyanation of plasticized poly(vinyl chloride) and its effect on bacterial adhesion. Biomaterials. 2003; 24(13): 2205-2212.

38. Poortinga A.T., Bos R., Norde W., Busscher H.J. Electric double layer interactions in bacterial adhesion to surfaces. Surf. Sci. Rep. 2002; 47(1): 1-32.

39. Tsuneda S., Aikawa H., Hayashi H., Hirata A. Significance of cell electrokinetic properties determined by soft-particle analysis in bacterial adhesion onto a solid surface. J. Colloid and Interface Sci. 2004; 279(2): 410-417.

40. Guzhova A.A., Temnov D.E., Galikhanov M.F. Influence of electretizing parameters on the surface and electret properties of polyethylene terephthalate. Izvestiya Rossiyskogo gosudarstvennogo pedagogicheskogo universiteta im. A.I. Gertsena (News of the A.I. Gertsen Russian State Pedagogical University). 2013; 157: 55-60 (in Russ.)

41. Rychkov D., Kuznetsov A., Rychkov A. Electret properties of polyethylene and polytetrafluoroethylene films with chemically modified surface. IEEE Trans. on Dielectrics and Electrical Insulation. 2011; 18(1): 8-14.

42. An Z., Mao M., Yao J., Zhang Y., Xia Z. Fluorinated cellular polypropylene films with timeinvariant excellent surface electret properties by posttreatments. J. Physics D: Appl. Physics. 2010: 43(41): 415302-415309.

43. Nakamura M., Nagai A., Yamashita K. Surface electric fields of apatite electret promote biological responses. Proceed. Int. Symp. on Electrets "2011 – 14th International Symposium on Electrets, ISE 2011", 2011: 183-184.

44. Balazs D.J., Triandafillu K., Wood P., Chevolot Y., Van Delden C., Harms H., Hollenstein C., Mathieu H.J. Inhibition of bacterial adhesion on PVC endotracheal tubes by rf-oxygen glow discharge, sodium hydroxide and silver nitrate treatments. Biomaterials. 2004: 25(11): 2139-2151.

45. Wang J., Kwok S.C.H., Chu P.K., Huang N., Pan C.J., Yang P., Leng Y.X., Chen J.Y., Sun H., Wan G.J., Liu Z.Y. Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation-deposition. Surf. and Coat. Tech. 2004: 186(1-2) (Spec. Iss.): 299-304.

46. Galikhanov M.F., Borisova A.N., Krynitskaya A.Yu. Active packing for bakery products. Khranenie i pererabotka sel’khozsyr’ya (Storage and Processing of Farm Products). 2006; 5: 59-63. (in Russ.)

47. Ponsonnet L., Boureanu M., Jaffrezic N., Othmane A., Dorel C., Lejeune P. Local pH variation as an initial step in bacterial surface-sensing and biofilm formation. Mater. Sci. and Eng.: C. 2008; 28(5-6): 896-900.

48. Sampedro I., Hill J.E., Parales R.E., Krell T. Pseudomonas chemotaxis. FEMS Microbiol. Rev. 2015; 39(1): 17-46.

49. Jerez C.A. Chemotactic transduction in biomining microorganisms. Hydrometallurgy. 2001; 59(2-3): 347-356.

50. Li Y., Mu B. Progress in chemotaxis of bacteria. Chinese J. Appl. and Environm. Biol. 2006; 12(1): 135-139.

51. Muskavitch Ma., Kort En., Springer Ms., Goy Mf., Adler J. Attraction by repellents: An error in sensory information processing by bacterial mutants. Science. 1978; 201(4350): 63-65.

52. Ronsin G., Kirby A.J., Rittenhouse S., Woodnutt G., Camilleri P. Structure and antimicrobial activity of new bile acid-based gemini surfactants. J. Chem. Soc., Perkin Trans. 2 (Phys. Org. Chem.). 2000; (7): 1302-1306.

53. Tan H., Xiao H. Synthesis and antimicrobial characterization of novel L-lysine gemini surfactants pended with reactive groups. Tetrahedron Lett. 2008; 49(11): 1759-1761.

54. Caillier L., Taffin de Givenchy E., Levy R., Vandenberghe Y., Geribaldi S., Guittard F. Polymerizable semi-fluorinated gemini surfactants designed for antimicrobial materials. J. Colloid and Interface Sci. 2009; 332(1): 201-207.

55. Chernyavskaya M.A., Stefanovich V.V., Sergeeva I.A., Belova A.S. Antimicrobial and surfaceactive properties of cationic surfactants based on chloroalkanes and alkylbenzenes. Pharm. Chem. J. 1984; 18(11): 784-787.

56. Passet B.V., Golubyatnikova A.A., Enina N.V., Nekrasov S.V., Mordvinova E.T. Relationship of structure to antimicrobial activity in anionic surfactants. Pharm. Chem. J. 1985; 19(11): 797-802.

57. Ergashev M.S., Makhsumov A.G., Il’khamdzhanov P. Synthesis and antimicrobial activity of cationic amino acetylene fatty acid ester surfactants. Pharm. Chem. J. 1987; 21(7): 510-512.

58. Aminov S.N., Tanaeva Z.F., Korneva L.E., Savitskaya L.A., Kim V. Synthesis, antimicrobial, and surfactant activity of octameric cyclic esters of alkylphosphonic acids. Pharm. Chem. J. 1987; 21(11): 785-788.

59. Kumar R.S., Arunachalam S., Periasamy V.S., Preethy C. P., Riyasdeen A., Akbarsha M.A. Surfactantcobalt(III) complexes: synthesis, critical micelle concentration (CMC) determination, DNA binding, antimicrobial and cytotoxicity studies. J. Inorg. Biochem. 2009; 103(1): 117-127.

60. Murguía M.C., Cristaldi M.D., Grau R.J., Porto A., Conza J.D. Synthesis, surface-active properties, and antimicrobial activities of new neutral and cationic trimeric surfactants. J. Surfactants and Detergents. 2008; 11(1): 41-48.

61. Miao Z., Zhang X., Zhang L., Wang Z., Li Y., Wang Y. Antimicrobial study of symmetrical gemini cationic surfactant based on N-hexadecyldimethylamine. Key Eng. Mater. 2014; (575-576): 245-248.

62. Nigmatullin R., Konovalova V., Gao F. Towards antimicrobial polymer materials: a new niche for clay/polymer nanocomposites. Encyclopedia of Polymer Composites: Properties, Performance and Applications. Nova Science Publ., 2011: 567-592.

63. Tsuneda S., Aikawa H., Hayashi H., Yuasa A., Hirata A. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol. Lett. 2003; 223(2): 287-292.

64. Speranza G., Gottardi G., Pederzolli C., Lunelli L., Canteri R., Pasquardini L., Carli E., Lui A., Maniglio D., Brugnara M., Anderle M. Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials. 2004; 25(11): 2029-2037.

65. Garrett T.R., Bhakoo M., Zhang Z. Bacterial adhesion and biofilms on surfaces. Progr. Nat. Sci. 2008; 18(9): 1049-1056.

66. Friedlander R.S., Vlamakisc H., Kimb P., Khanb M., Kolterc R., Aizenberg J. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proceed. Natl. Acad. Sci. 2013; 110(14): 5624-5629.

67. Hsu L.C., Worobo R.W., Moraru C.I., Fang J., Borca-Tasciuc D.A. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl. and Environm. Microbiol. 2013; 79(8): 2703-2712.

68. Taylor R.L., Verran J., Lees G.C., Ward A.J.P. The influence of substratum topography on bacterial adhesion to polymethyl methacrylate. J. Mater. Sci.: Materials in Medicine. 1998; 9(1): 17-22.

69. Ma H., Winslow C.J., Logan B.E. Spectral force analysis using atomic force microscopy reveals the importance of surface heterogeneity in bacterial and colloid adhesion to engineered surfaces. Colloids and Surfaces B: Biointerfaces. 2008; 62(2): 232-237.

70. Zhang X., Levanen E., Wang L. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013; 3(30): 12003-12020.

71. Crick C.R., Parkin I.P., Ismail S., Pratten J. An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Films. 2011; 519(11): 3722-3727.

72. Muszanska A.K., Nejadnik M.R., Chen Y., Busscher H.J., Van Der Mei H.C., Norde W., Van Den Heuvel E.R. Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics. Antimicrob. Agents and Chemother. 2012; 56(9): 4961-4964.

73. Chen G., Zhu H. Bacterial adhesion to silica sand as related to Gibbs energy variations. Colloids and Surfaces B: Biointerfaces. 2005; 44(1): 41-48.

74. Zhao Q. Effect of surface free energy of graded Ni-P-PTFE coatings on bacterial adhesion. Surf. and Coat. Technol. 2004; 185(2-3): 199-204.

75. Nill P., Loeffler R., Kern D.P., Goehring N., Peschel A. Studying bacterial adhesion forces: Staphylococcus aureus on elastic poly(dimethyl)siloxane substrates. 36th Int. Conf. on Micro & Nano Eng. Genoa, 19-22 September 2010. P. 178.

76. Bayoudh S., Othmane A., Bettaieb F., Bakhrouf A., Ouada H.B., Ponsonnet L. Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata. Mater. Sci. and Eng.: C. 2006; 26(2-3): 300-305.

77. Satriano C., Messina G.M.L., Carnazza S., Guglielmino S., Marletta G. Bacterial adhesion onto nanopatterned polymer surfaces. Mater. Sci. and Eng.: C. 2006; 26(5-7): 942-946.

78. Boks N.P., Kaper H.J., Norde W., van der Mei H.C., Busscher H.J. Mobile and immobile adhesion of staphylococcal strains to hydrophilic and hydrophobic surfaces. J. Colloid and Interface Sci. 2009; 331(1): 60-64.

79. Tsibouklis J., Stone M., Thorpe A.A., Graham P., Peters V., Heerlien R., Smith J.R., Green K.L., Nevell T.G. Preventing bacterial adhesion onto surfaces: the low-surface-energy approach. Biomaterials. 1999; 20(13): 1229-1235.

80. Thorpe A.A., Peters V., Smith J.R., Nevell T.G., Tsibouklis J. Poly(methylpropenoxyfluoroalkylsil oxane)s: a class of fluoropolymers capable of inhibiting bacterial adhesion onto surfaces. J. Fluor. Chem. 2000; 104(1): 37-45.

81. Yeniyol C.O., Tuna A., Yener H., Zeyrek N., Tilki A., Coskuner A. Bacterial colonization of double J stents and bacteriuria frequency. Int. Urol. and Nephrol. 2002; 34(2): 199-202.

82. Sohn E.-H., Kim J., Kim B.G., Kang J. I., Chung J.-S., Ahn J., Yoon J., Lee J.-C. Inhibition of bacterial adhesion on wellordered comb-like polymer surfaces. Colloids and Surfaces B: Biointerfaces. 2010; 77(2): 191-199.

83. Nejadnik M.R., van der Mei H.C., Norde W., Busscher H.J. Bacterial adhesion and growth on a polymer brush-coating. Biomaterials. 2008; 29(30): 4117-4121.

84. Ostuni E., Chapman R.G., Liang M.N., Meluleni G., Pier G., Ingber D.E., Whitesides G.M. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir: the ACS J. Surfaces and Colloids. 2001; 17(20): 6336-6343.

85. Nurioglu A.G., Esteves A.C.C., De With G. Nontoxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. J. Mater. Chem. B. 2015; 3(32): 6547-6570.

86. Ki D.P., Young S.K., Dong K.H., Young H.K., Eun H.B.L., Hwal S., Kyu S.C. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials. 1998; 19(7-9): 851-859.

87. Bruinsma G.M., van der Mei H.C., Busscher H.J. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials. 2001; 22(24): 3217-3224.

88. Herrero M., Navarro R., Grohens Y., Reinecke H., Mijangos C. Controlled wet-chemical modification and bacterial adhesion on PVC-surfaces. Polym. Degrad. and Stab. 2006; 91(9): 1915-1918.

89. Krsko P., Kaplan J.B., Libera M. Spatially controlled bacterial adhesion using surface-patterned poly(ethylene glycol) hydrogels. Acta Biomater. 2009; 5(2): 589-596.

90. Saldarriaga Fernandez I.C., van der Mei H.C., Lochhead M.J., Grainger D.W., Busscher H.J. The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings. Biomaterials. 2007; 28(28): 4105-4112.

91. Lee H.J., Park K.D., Park H.D., Lee W.K., Han D.K., Kim S.H., Kim Y.H. Platelet and bacterial repellence on sulfonated poly(ethylene glycol)-acrylate copolymer surfaces. Colloids and Surfaces B: Biointerfaces. 2000; 18(3-4): 355-370.

92. Baumgartner J.N., Chang Z.Y., Cooper S.L. Physical property analysis and bacterial adhesion on a series of phosphonated polyurethanes. Biomaterials. 1997; 18(12): 831-837.

93. Park J.H., Cho Y.W., Kwon I.C., Jeong S.Y., Bae Y.H. Assessment of PEO/PTMO multiblock copolymer/segmented polyurethane blends as coating materials for urinary catheters: in vitro bacterial adhesion and encrustation behavior. Biomaterials. 2002; 23(19): 3991-4000.

94. Karabanova L.V., Sergeeva L.M., Mikhalovska S.V., Meikle S.T., Helias M., Lloyd W. Semi-interpenetrating polymer networks based on polyurethane and poly(vinyl pyrrolidone) obtained by photopolymerization: structure-property relationships and bacterial adhesion. Polym. Eng. and Sci. 2004; 44(5): 940-947.

95. Shi L., Ardehali R., Caldwell K.D., Valint P. Mucin coating on polymeric material surfaces to suppress bacterial adhesion. Colloids and Surfaces B: Biointerfaces. 2000; 17(4): 229-239.

96. Chua P.H., Neoh K.G., Kang E.T., Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. 2008; 29(10): 1412-1421.

97. Cadieux P., Watterson J.D., Denstedt J., Harbottle R.R., Puskas J., Howard J., Gan B.S., Reid G. Potential application of polyisobutylene-polystyrene and a lactobacillus protein to reduce the risk of deviceassociated urinary tract infections. Colloids and Surfaces B: Biointerfaces. 2003; 28(2-3): 95-105.

98. DiTizio V., Ferguson G.W., Mittelman M.W., Khoury A.E., Bruce A.W., DiCosmo F. A liposomal hydrogel for the prevention of bacterial adhesion to catheters. Biomaterials. 1998; 19(20): 1877-1884.

99. Arciola C.R., Cenni E., Pizzoferrato A., Maltarello M.C. Disposable contact lenses and bacterial adhesion. In vitro comparison between ionic/highwater-content and non-ionic/low-water-content lenses. Biomaterials. 1995; 16(9): 685-690.

100. Wei J., Ravn D.B., Gram L., Kingshott P. Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion. Colloids and Surfaces B: Biointerfaces. 2003; 32(4): 275-291.

101. Kiil S., Dam-Johansen K., Weinell C.E., Pedersen M.S. Seawater-soluble pigments and their potential use in self-polishing antifouling paints: simulation-based screening tool. Progr. Org. Coat. 2002; 45(4): 423-434.

102. Monfared H., Sharif F. Design guidelines for development of tin-free antifouling self-polishing coatings using simulation. Progr. Org. Coat. 2008; 63(1): 79-86.

103. Yebra D.M., Kiil S., Dam-Johansen K. Antifouling technology – past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progr. Org. Coat. 2004; 50(2): 75-104.

104. Samui A.B., Chavan J.G., Hande V.R. Study on film forming organo-copper polymer. Progr. Org. Coat. 2006; 57(4): 301-306.

105. Ananda Kumar S., Sasikumar A. Studies on novel silicone/phosphorus/sulphur containing nanohybrid epoxy anticorrosive and antifouling coatings. Progr. Org. Coat. 2010; 68(3): 189-200.

106. Joyce T.J., Grigg H., Langton D.J., Nargol A.V.F. Quantification of self-polishing in vivo from explanted metal-on-metal total hip replacements. Tribol. Int. 2011; 44(5): 513-516.

107. De La Rosa V.R. Poly(2-oxazoline)s as materials for biomedical applications. J. Mater. Sci.: Materials in Medicine. 2014; 25(5): 1211-1225.

108. Valkirs A.O., Seligman P.F., Haslbeck E., Caso J.S. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: implications for loading estimation to marine water bodies. Marine Pollut. Bull. 2003; 46(6): 763-779.

109. Camail M., Humbert M., Margaillan A., Riondel A., Vernet J.L. New acrylic titanium polymers: 1. Synthesis and characterization of new titanium trialkoxide methacrylate monomers prepared via the esterification of methacrylic acid by titanium tetraalkoxides. Polymer. 1998; 39(25): 6525-6531.

110. Camail M., Humbert M., Margaillan A., Vernet J.L. New acrylic titanium polymers: 2. Synthesis and characterization of organotitanium polymers. Polymer. 1998; 39(25): 6533-6539.

111. Li J., Liu Y., Jiang Z., Ma K., Ren X., Huang T.-S. Antimicrobial cellulose modified with nanotitania and cyclic n-halamine. Ind. and Eng. Chem. Res. 2014; 53(33): 13058-13064.

112. Yonehara Y., Yamashita H., Kawamura C., Itoh K. A new antifouling paint based on a zinc acrylate copolymer. Progr. Org. Coat. 2001; 42(3-4): 150-158.

113. Mirabedini S.M., Pazoki S., Esfandeh M., Mohseni M., Akbari Z. Comparison of drag characteristics of self-polishing co-polymers and silicone foul release coatings: a study of wettability and surface roughness. Progr. Org. Coat. 2006: 57(4): 421-429.

114. Bakhshi H., Yeganeh H., Yari A., Nezhad S.K. Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. J. Mater. Sci. 2014; 49(15): 5365-5377.

115. Coma V., Freire V., Silvestre A.J.D. Recent advances on the development of antibacterial polysaccharide-based materials. In: Polysaccharides: Bioactivity and Biotechnology. Springer Int. Publ., 2015: 1751-1803.

116. Yebra D.M., Kiil S., Weinell C.E., DamJohansen K. Effects of marine microbial biofilms on the biocide release rate from antifouling paints-a modelbased analysis. Progr. Org. Coat. 2006; 57(1): 56-66.

117. Evans S.M., Nicholson G.J. The use of imposex to assess tributyltin contamination in coastal waters and open seas. The Science of the Total Environment. 2000; 258(1-2): 73-80.

118. Michel P., Averty B., Andral B., Chiffoleau J.F., Galgani F. Tributyltin along the coasts of corsica (western mediterranean): a persistent problem. Marine Pollut. Bull. 2001; 42(11): 1128-1132.

119. Birchenough A.C., Barnes N., Evans S.M., Hinz H., Kronke I., Moss C. A review and assessment of tributyltin contamination in the North Sea, based on surveys of butyltin tissue burdens and imposex/intersex in four species of neogastropods. Marine Pollut. Bull. 2002; 44(6): 534-543.

120. Biomedical polymers / ed. M. Jenkins. Cambridge: Woodhead Publ., 2007. 236 p.

121. Bieser A.M., Thomann Y., Tiller J.C. Contactactive antimicrobial and potentially self-polishing coatings based on cellulose. Macromol. Biosci. 2011; 11(1): 111-121.

For citation:

Lyusova L.R., Ilyin А.А., Shibryaeva L.S. METHODS OF PREVENTING BIOFILMS FORMATION ON THE SURFACES OF POLYMER MATERIALS. Fine Chemical Technologies. 2018;13(6):5-27. (In Russ.)

Views: 218

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)