Preview

Fine Chemical Technologies

Advanced search

Structure and biological action of analogs and derivatives of biogenic polyamines

https://doi.org/10.32362/2410-6593-2021-16-4-287-306

Full Text:

Abstract

Objectives. Biogenic polyamines are widely present in nature. They are characteristic of both protozoan cells and multicellular organisms. These compounds have a wide range of biological functions and are necessary for normal growth and development of cells. Violation of polyamine homeostasis can cause significant abnormalities in cell functioning, provoking various pathological processes, including oncological and neuropsychiatric diseases. The impact on the “polyamine pathway” is an attractive basis for the creation of many pharmacological agents with a diverse spectrum of action. The purpose of this review is to summarize the results of the studies devoted to understanding the biological activity of compounds of the polyamine series, comparing their biological action with action on certain molecular targets. Due to the structural diversity of this group of substances, it is impossible to fully reflect the currently available data in one review. Therefore, in this work, the main attention is paid to the derivatives, acyclic saturated polyamines.
Results. The following aspects are considered: biological functionality, biosynthesis and catabolism, cell transport, and localization of biogenic polyamines in the living systems. Structural analogs and derivatives of biogenic polyamines with antitumor, neuroprotective, antiarrhythmic, antiparasitic, antibacterial, and other biological activities are represented; the relationship between biological activity and the target of exposure is reflected. It was found that the nature of the substituent, the number of cationic centers, and the length of the polyamine chain have a great influence on the nature of the effect.
Conclusions. At present, the use of polyamine structures is restrained by cytotoxicity and nonspecific toxic effects on the central nervous system. Further research in the field of biochemistry, cell transport, and a deeper understanding of receptor interaction mechanisms will help making polyamines as the basis for potential drug formulation.

About the Authors

O. S. Egorov
MIREA – Russian Technological University
Russian Federation

Oleg S. Egorov, Master Student, N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies

86, Vernadskogo pr., Moscow, 119571

Scopus Author ID 8880163900


Competing Interests:

The authors declare no conflicts of interest.



N. Yu. Borisova
MIREA – Russian Technological University
Russian Federation

Nadezhda Yu. Borisova, Cand. Sci. (Chem.), Associate Professor, N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies

86, Vernadskogo pr., Moscow, 119571

Scopus Author ID 55780738100


Competing Interests:

The authors declare no conflicts of interest.



E. Ya. Borisova
MIREA – Russian Technological University
Russian Federation

Elena Ya. Borisova, Dr. Sci. (Chem.), Professor, N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies

86, Vernadskogo pr., Moscow, 119571

Scopus Author ID 8880163900


Competing Interests:

The authors declare no conflicts of interest.



M. L. Rezhabbaev
MIREA – Russian Technological University
Russian Federation

Muzaffar L. Rezhabbaev, Postgraduate Student, N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest.



E. Yu. Afanas’eva
National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation
Russian Federation

Elena Yu. Afanas’eva, Cand. Sci. (Med.), Leading Researcher, National Medical Research Center of Cardiology

15a, 3 Cherepkovskaya ul., Moscow, 121552


Competing Interests:

The authors declare no conflicts of interest.



E. V. Arzamastsev
National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation
Russian Federation

Evgeny V. Arzamastsev, Dr. Sci. (Med.), Professor, Head of the Laboratory of Drug Toxicology, National Medical Research Center of Cardiology

15a, 3 Cherepkovskaya ul., Moscow, 121552


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов.



References

1. Shoji T., Hashimoto T. Polyamine-Derived Alkaloids in Plants: Molecular Elucidation of Biosynthesis. In: Polyamines: A Universal Molecular Nexus for Growth, Survival, and Specialized Metabolism. Tokyo, Japan: Springer; 2015. P. 189–200. https://doi.org/10.1007/978-4-431-55212-3_16

2. Kachel H.S., Buckingham S.D., Sattelle D.B. Insect toxins–selective pharmacological tools and drug/chemical leads. Curr. Opin. Insect. Sci. 2018;30:93–98. https://doi.org/10.1016/j.cois.2018.10.001

3. Fujiwara T., Hasegawa S., Hirashima N., Nakanishi M., Ohwada T. Gene transfection activities of amphiphilic steroid–polyamine conjugates. Biochim. Biophys. Acta. Biomembr. 2000;1468(1–2):396–402. https://doi.org/10.1016/S0005-2736(00)00278-9

4. Menzi M., Lightfoot H.L., Hall J. Polyamine– oligonucleotide conjugates: a promising direction for nucleic acid tools and therapeutics. Future Med. Chem. 2015;7(13):1733–1749. https://doi.org/10.4155/fmc.15.90

5. Pegg A.E. Functions of polyamines in mammals. J. Biol. Chem. 2016;291(29):14904–14912. https://doi.org/10.1074/jbc.r116.731661

6. Bachrach U. Naturally occurring polyamines: interaction with macromolecules. Curr. Protein Pept. Sci. 2005;6(6):559–566. https://doi.org/10.2174/138920305774933240

7. D’Agostino L., Di Pietro M., Di Luccia A. Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation. The FEBS J. 2005;272(15):3777–3787. https://doi.org/10.1111/j.1742-4658.2005.04782.x

8. Douki T., Bretonniere Y., Cadet J. Protection against radiation-induced degradation of DNA bases by polyamines. Radiat. Res. 2000;153(1):29–35. https://doi.org/10.1667/0033-7587(2000)153[0029:PARIDO]2.0.CO;2

9. Rudolphi-Szydło E., Filek M., Dyba B., Miszalski Z., Zembala M. Antioxidative action of polyamines in protection of phospholipid membranes exposed to ozone stress. Acta Biochim. Pol. 2020;67(2):259–262. https://doi.org/10.18388/abp.2020_5230

10. Rosenheim O. The isolation of spermine phosphate from semen and testis. Biochem. J. 1924;18(6):1253–1262. https://doi.org/10.1042/bj0181253

11. Bachrach U. The early history of polyamine research. Plant Physiol. Biochem. 2010;48(7):490–495. https://doi.org/10.1016/j.plaphy.2010.02.003

12. Michael A.J. Polyamines in eukaryotes, bacteria, and archaea. J. Biol. Chem. 2016;291(29):14896–14903. https://doi.org/10.1074/jbc.R116.734780

13. Kuksa V., Buchan R., Lin P. K.T. Synthesis of polyamines, their derivatives, analogues and conjugates. Synthesis. 2000;2000(09):1189–1207. https://doi.org/10.1055/s-2000-6405

14. Gupta K., Dey A., Gupta B. Plant polyamines in abiotic stress responses. Acta Physiol. Plant. 2015;35(7):2015–2036. https://doi.org/10.1007/s11738-013-1239-4

15. Urdiales J.L., Medina M.A., Sanchez-Jimenez F. Polyamine metabolism revisited. Eur. J. Gastroenterol. Hepatol. 2001;13(9):1015–1019. https://doi.org/10.1097/00042737-200109000-00003

16. Mimitsuka T., Sawai H., Hatsu M., Yamada K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci. Biotechnol. Biochem. 2007;71(9):2130–2135. https://doi.org/10.1271/bbb.60699

17. Chou, H.T., Li, J.Y., Peng, Y.C., Lu, C.D. Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the γ-glutamylation pathway in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2013;195(17):3906–3913. https://doi.org/10.1128/jb.00275-13

18. Konishi H., Nakajima T., Sano I. Metabolism of putrescine in the central nervous system. J. Biochem. 1977;81(2):355–360. https://doi.org/10.1093/oxfordjournals.jbchem.a131466

19. Casero Jr R.A., Pegg A.E. Spermidine/spermine N1-acetyltransferase—the turning point in polyamine metabolism. Faseb J. 1993;7(8):653–66. https://doi.org/10.1096/fasebj.7.8.8500690

20. Vujcic S., Diegelman P., Bacchi C.J., Kramer D.L., Porter C.W. Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem. J. 2002;367(3):665–675. https://doi.org/10.1042/bj20020720

21. Takao K., Sugita Y. Pentamine as a Substrate for Measuring Spermine Oxidase Activity. In: Polyamines: Methods and Protocols. New York, USA: Humana Press; 2018. P. 149–154. https://doi.org/10.1007/978-1-4939-7398-9_15

22. Casero Jr R.A., Pegg A.E. Polyamine catabolism and disease. Biochem. J. 2009;421(3):323–338. https://doi.org/10.1042/bj20090598

23. Seiler N., Eichentopf B. 4-Aminobutyrate in mammalian putrescine catabolism. Biochem. J. 1975;152(2):201–210. https://doi.org/10.1042/bj1520201

24. Burkard W.P., Gey K.F., Pletscher A. Diamine oxidase in the brain of vertebrates. J. Neurochem. 1963;10(3):183–186. https://doi.org/10.1111/j.1471-4159.1963.tb09481.x

25. Seiler N., Schmidt-Glenewinkel T., Sarhan S. On the formation of γ-aminobutyric acid from putrescine in brain. J. Biochem. 1979;86(1):277–278.

26. Seiler N., Lamberty U., Al‐Therib M.J. Acetyl-Coenzyme A:1, 4‐diaminobutane N‐acetyltransfetase: activity in rat brain during development, in experimental brain tumors and in brains of fish of different metabolic activity. J. Neurochem. 1975;24(4):797–800.

27. Seiler N., Al-Therib M.J. Acetyl-CoA:1, 4-diaminobutane N-acetyltransferase occurence in vertebrate organs and subcellular localization. Biochim. Biophys. Acta. Gen. Subj. 1974;354(2):206–212. https://doi.org/10.1016/0304-4165(74)90007-5

28. Sessa A., Perin A. Diamine oxidase in relation to diamine and polyamine metabolism. Agents and Actions. 1994;43(1–2):69–77. https://doi.org/10.1007/BF02005768

29. Missala K., Sourkes T.L., Putrescine catabolism in rats given heparin or aminoguanidine. Eur. J. Pharmacol. 1980;64(4):307–311. https://doi.org/10.1016/0014-2999(80)90238-1

30. Schayer R.W., Smiley R.L., Kennedy J. Diamine oxidase and cadaverine metabolism. J. Biol. Chem. 1954;206(1):461–464.

31. Ekegren T., Gomes-Trolin C., Nygren I., Askmark H. Maintained regulation of polyamines in spinal cord from patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 2004;222(1–2):49–53. https://doi.org/10.1016/j.jns.2004.04.011

32. Ekegren T., Gomes-Trolin C. Determination of polyamines in human tissues by precolumn derivatization with 9-fluorenylmethyl chloroformate and high-performance liquid chromatography. Anal. Biochem. 2005;338(2):179–185. https://doi.org/10.1016/j.ab.2004.11.040

33. Wallace H.M., Fraser A.V. Inhibitors of polyamine metabolism. Amino acids. 2004;26(4):353–365. https://doi.org/10.1007/s00726-004-0092-6

34. Palmer A.J., Wallace H.M. The polyamine transport system as a target for anticancer drug development. Amino acids. 2010;38(2):415–422. https://doi.org/10.1007/s00726-009-0400-2

35. Bardocz S., Grant G., Brown D.S., Pusztai A. Polyamines in food―implications for growth and health. J. Nutr. Biochem. 1993;4(2):66–71. https://doi.org/10.1016/0955-2863(93)90001-D

36. Ask A., Persson L., Heby O. Increased survival of L1210 leukemic mice by prevention of the utilization of extracellular polyamines. Studies using a polyamineuptake mutant, antibiotics and a polyamine-deficient diet. Cancer Lett. 1992;66(1):29–34. https://doi.org/10.1016/0304-3835(92)90276-2

37. Igarashi K., Ito K., Kashiwagi K. Polyamine uptake systems in Escherichia coli. Res. Microbiol. 2001;152(3–4):271–278. https://doi.org/10.1016/S0923-2508(01)01198-6

38. Poulin R., Casero R.A., Soulet D. Recent advances in the molecular biology of metazoan polyamine transport. Amino acids. 2012;42(2–3):711–723. https://doi.org/10.1007/s00726-011-0987-y

39. Soulet D., Gagnon B., Rivest S., Audette M., Poulin R. A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J. Biol. Chem. 2004;279(47):49355–49366. https://doi.org/10.1074/jbc.M401287200

40. Belting M., Mani K., Jönsson M., Cheng F., Sandgren S., Jonsson S., Ding K., Delcros J., Fransson L. Glypican-1 is a vehicle for polyamine uptake in mammalian cells a pivotal role for nitrosothiol-derived nitric oxide. J. Biol. Chem. 2003;278(47):47181–47189. https://doi.org/10.1074/jbc.M308325200

41. Uemura T., Yerushalmi H.F., Tsaprailis G., Stringer D.E., Pastorian K.E., Hawel L., Byus C.V., Gerner E.W. Identification and characterization of a diamine exporter in colon epithelial cells. J. Biol. Chem. 2008;283(39):26428–26435. https://doi.org/10.1074/jbc.M804714200

42. Bachrach U., Seiler N. Formation of acetylpolyamines and putrescine from spermidine by normal and transformed chick embryo fibroblasts. Cancer Res. 1981;41(3):1205–1208.

43. Israel M., Rosenfield J.S., Modest E.J. Analogs of Spermine and Spermidine. I. Synthesis of Polymethylenepolyamines by Reduction of Cyanoethylated α, ι-Alkylenediamines1,2. J. Med. Chem. 1964;7(6):710–716. https://doi.org/10.1021/jm00336a006

44. Maddock C. L., D’Angio G.J., Farber S., Handler A.H. Biological studies of Actinomycin D. Ann. N. Y. Acad. Sci. 1960;89(2):386–398. https://doi.org/10.1111/j.1749-6632.1960.tb20162.x

45. Serre D., Erbek S., Berthet N., Ronot X., Martel-Frachet V., Thomas F. Copper(II) complexes of N3 O tripodal ligands appended with pyrene and polyamine groups: anti-proliferative and nuclease activities. J. Inorg. Biochem. 2018;179:121–134. https://doi.org/10.1016/j.jinorgbio.2017.11.006

46. Silva T.M., Andersson S., Sukumaran S.K., Marques M.P., Persson L., Oredsson S. Norspermidine and novel Pd(II) and Pt(II) polynuclear complexes of norspermidine as potential antineoplastic agents against breast cancer. PLoS One. 2013;8(2):e55651. https://doi.org/10.1371/journal.pone.0055651

47. Seiler N. Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 1. Selective enzyme inhibitors. Curr. Drug. Targets. 2003;4(7):537–564. https://doi.org/10.2174/1389450033490885

48. Porter C.W., Cavanaugh P.F., Stolowich N., Ganis B., Kelly E., Bergeron R.J. Biological properties of N4-and N1 , N8 -spermidine derivatives in cultured L1210 leukemia cells. Cancer Res. 1985;45(5):2050–2057.

49. Porter C.W., Berger F.G., Pegg A.E., Ganis B., Bergeron R.J. Regulation of ornithine decarboxylase activity by spermidine and the spermidine analogue N1 ,N8-bis(ethyl)-spermidine. Biochem. J. 1987;242(2):433–440. https://doi.org/10.1042/bj2420433

50. Saab N.H., West E.E., Bieszk N.C., Preuss C.V., Mank A.R., Casero Jr R.A., Woster P.M. Synthesis and evaluation of unsymmetrically substituted polyamine analogs as modulators of human spermidine/spermineN1 -acetyltransferase (SSAT) and as potential antitumor agents. J. Med. Chem. 1993;36(20):2998–3004. https://doi.org/10.1021/jm00072a020

51. Reddy V.K., Valasinas A., Sarkar A., Basu H.S., Marton L.J., Frydman B. Conformationally restricted analogues of 1 N, 12N-bisethylspermine:synthesis and growth inhibitory effects on human tumor cell lines. J. Med. Chem. 1998;41(24):4723–4732. https://doi.org/10.1021/jm980172v

52. Valasinas A., Sarkar A., Reddy V.K., Marton L.J., Basu H. S., Frydman, B. Conformationally restricted analogues of 1 N, 14N-bisethylhomospermine (BE-4-4-4): synthesis and growth inhibitory effects on human prostate cancer cells. J. Med. Chem. 2001;44(3):390–403. https://doi.org/10.1021/jm000309t

53. Zagaja G.P., Shrivastav M., Marton L.J., RinkerSchaeffer C.W., Dolan M.E., Fleig M.F. Effects of polyamine analogues on prostatic adenocarcinoma cells in vitro and in vivo. Cancer Chemother. Pharmacol. 1998;41(6):505–512. https://doi.org/10.1007/s002800050774

54. Bergeron R.J., Wiegand J., McManis J.S., Weimar W.R., Smith R.E., Algee S.E., Fannin T.L., Slusher M.A., Snyder P.S. Polyamine analogue antidiarrheals: a structureactivity study. J. Med. Chem. 2001;44(2):232–244. https://doi.org/10.1021/jm000277+

55. Wolff A.C., Armstrong D.K., Fetting J.H., Carducci M.K., Riley C.D., Bender J.F., Casero Jr. R.A., Davidson N.E. A Phase II study of the polyamine analog N1 ,N11-diethylnorspermine (DENSpm) daily for five days every 21 days in patients with previously treated metastatic breast cancer. Clin. Cancer Res. 2003;9(16):5922–5928.

56. Khomutov R.M., Denisova G.F., Khomutov A.R., Belostotskaya K.M., Shlosman R.B., Artamonova E.Yu. Aminooxypropylamine is an effective inhibitor of ornithine decarboxylase in vitro and in vivo. Bioorganicheskya Khimiya = Russian Journal of Bioorganic Chemistry. 1985;11(11):1574–1576 (in Russ.).

57. Khomutov A.R., Shvetsov A.S., Vepsalainen J., Kramer D.L., Porter C.W., Hyvonen T., Keinanen T., Eloranta T.O., Khomutov R.M. New aminooxy analogs of biogenic polyamines. Russ. J. Bioorganic Chem. 1996;22(7):476–478.

58. Eloranta T.O., Khomutov A.R., Khomutov R.M., Hyvönen T. Aminooxy analogues of spermidine as inhibitors of spermine synthase and substrates of hepatic polyamine acetylating activity. J. Biochem. 1990;108(4):593–598.

59. Khomutov M.A., Weisell J., Hyvönen M., Keinänen T.A., Vepsäläinen J., Alhonen L., Khomutov A.R., Kochetkov S.N. Hydroxylamine derivatives for regulation of spermine and spermidine metabolism. Biochemistry (Moscow). 2013;78(13):1431–1446 https://doi.org/10.1134/S0006297913130051

60. Edwards M.L., Prakash N.J., Stemerick D.M., Sunkara S.P., Bitonti A.J., Davis G.F., Dumont J.A., Bey P. Polyamine analogs with antitumor activity. J. Med. Chem. 1990;33(5):1369–1375. https://doi.org/10.1021/jm00167a014

61. Seiler N., Douaud F., Havouis R., LeRoch N., Renault J., Vaultier M., Moulinoux J. Dimethylsilane polyamines, a new class of potential anticancer drugs. Int. J. Oncol. 1997;11(4):835–841. https://doi.org/10.3892/ijo.11.4.835

62. Levy S. B. Antibiotic resistance—the problem intensifies. Adv. Drug Deliv. Rev. 2005;57(10):1446–1450. https://doi.org/10.1016/j.addr.2005.04.001

63. Xu M., Davis R.A., Feng Y., Sykes M.L., Shelper T., Avery V.M., Camp D., Quinn R.J. Ianthelliformisamines A–C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J. Nat. Prod. 2012;75(5):1001–1005. https://doi.org/10.1021/np300147d

64. Choudhary A., Naughton L.M., Montánchez I., Dobson A.D., Rai D.K. Current status and future prospects of marine natural products (MNPs) as antimicrobials. Mar. Drugs. 2017;15(9):272. https://doi.org/10.3390/md15090272

65. Khan F.A., Ahmad S., Kodipelli N., Shivange G., Anindya R. Syntheses of a library of molecules on the marine natural product ianthelliformisamines platform and their biological evaluation. Org. Biomol. Chem. 2014;12(23):3847–3865. https://doi.org/10.1039/C3OB42537A

66. Li S.A., Cadelis M.M., Sue K., Blanchet M., Vidal N., Brunel J.M., Bourguet-Kondracki M., Copp B.R. 6-Bromoindolglyoxylamido derivatives as antimicrobial agents and antibiotic enhancers. Bioorg. Med. Chem. 2019;27(10):2090–2099. https://doi.org/10.1016/j.bmc.2019.04.004

67. Borselli D., Blanchet M., Bolla J.M., Muth A., Skruber K., Phanstiel IV, O., Brunel J.M. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram‐Negative Bacteria. ChemBioChem. 2017;18(3):276–283. https://doi.org/10.1002/cbic.201600532

68. Balakrishna R., Wood S.J., Nguyen T.B., Miller K.A., Kumar E.S., Datta A., David S.A. Structural correlates of antibacterial and membrane-permeabilizing activities in acylpolyamines. Antimicrob. Agents Chemother. 2006;50(3):852–861. https://doi.org/10.1128/aac.50.3.852-861.2006

69. Blanchet M., Borselli D., Brunel J.M. Polyamine derivatives: a revival of an old neglected scaffold to fight resistant Gram-negative bacteria? Future. Med. Chem. 2016;8(9):963–973. https://doi.org/10.4155/fmc-2016-0011

70. Laurence D.R., Bennett P.N. Clinical Pharmacology. Edinburgh, London, and New York: Churchill Livingstone; 1987. V. 1. 788 p.

71. Marton L.J., Pegg A.E. Polyamines as targets for therapeutic intervention. Annu. Rev. Pharmacol. Toxicol. 1995;35(1):55–91. https://doi.org/10.1146/annurev.pa.35.040195.000415

72. Bitonti A.J., Dumont J.A., Bush T.L., Edwards M.L., Stemerick D.M., McCann P.P., Sjoerdsma A. Bis(benzyl) polyamine analogs inhibit the growth of chloroquineresistant human malaria parasites (Plasmodium falciparum) in vitro and in combination with alphadifluoromethylornithine cure murine malaria. PNAS USA. 1989;86(2):651–655. https://doi.org/10.1073/pnas.86.2.651

73. Baumann R.J., Hanson W.L., McCann P.P., Sjoerdsma A., Bitonti A.J. Suppression of both antimonysusceptible and antimony-resistant Leishmania donovani by a bis(benzyl)polyamine analog. Antimicrob. Agents Chemother. 1990;34(5):722–727. https://doi.org/10.1128/aac.34.5.722

74. Baumann R.J., McCann P.P., Bitonti A.J. Suppression of Leishmania donovani by oral administration of a bis(benzyl)polyamine analog. Antimicrob. Agents Chemother. 1991;35(7):1403–1407. https://doi.org/10.1128/aac.35.7.1403

75. Majumder S., Kierszenbaum F. Inhibition of host cell invasion and intracellular replication of Trypanosoma cruzi by N,N’-bis(benzyl)-substituted polyamine analogs. Antimicrob. Agents Chemother. 1993;37(10):2235–2238. https://doi.org/10.1128/AAC.37.10.2235

76. Labadie G.R., Choi S.R., Avery M.A. Diamine derivatives with antiparasitic activities. Bioorganic Med. Chem. Lett. 2004;14(3):615-619. https://doi.org/10.1016/j.bmcl.2003.11.055

77. Klenke B., Barrett M.P., Brun R., Gilbert I.H. Antiplasmodial activity of a series of 1,3,5-triazine-substituted polyamines. J. Antimicrob. Chemother. 2003;52(2):290–293. https://doi.org/10.1093/jac/dkg307

78. Verlinden B.K., De Beer M., Pachaiyappan B., Besaans E., Andayi W.A., Reader J., Niemand J., Biljon R., Guy K., Egan T., Woster P.M., Birkholtz L.M. Interrogating alkyl and arylalkylpolyamino (bis)urea and (bis)thiourea isosteres as potent antimalarial chemotypes against multiple lifecycle forms of Plasmodium falciparum parasites. Bioorg. Med. Chem. 2015;23(16):5131–5143. https://doi.org/10.1016/j.bmc.2015.01.036

79. Niemand J., Burger P., Verlinden B.K., Reader J., Joubert A.M., Kaiser A., Louw A.I., Kirk K., Phanstiel IV O., Brikholtz L. Anthracene-polyamine conjugates inhibit in vitro proliferation of intraerythrocytic Plasmodium falciparum parasites. Antimicrob. Agents Chemother. 2013;57(6):2874–2877. https://doi.org/10.1128/aac.00106-13

80. Liew L.P., Pearce A.N., Kaiser M., Copp B.R. Synthesis and in vitro and in vivo evaluation of antimalarial polyamines. Eur. J. Med. Chem. 2013;69:22–31. https://doi.org/10.1016/j.ejmech.2013.07.055

81. Wang J., Kaiser M., Copp B.R. Investigation of indolglyoxamide and indolacetamide analogues of polyamines as antimalarial and antitrypanosomal agents. Mar. Drugs. 2014;12(6):3138–3160. https://doi.org/10.3390/md12063138

82. El Bissati K., Redel H., Ting L.M., Lykins J.D., McPhillie M.J., Upadhya R., Woster P.M., Yarlett N., Kim K., Weiss L.M. Novel synthetic polyamines have potent antimalarial activities in vitro and in vivo by decreasing intracellular spermidine and spermine concentrations. Front. Cell. Infect. Microbiol. 2019;9:9. https://doi.org/10.3389/fcimb.2019.00009

83. Eckert H., Bajorath J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov. Today. 2007;12(5–6):225–233. https://doi.org/10.1016/j.drudis.2007.01.011

84. Huang C.J., Moczydlowski E. Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel. Biophys. J. 2001;80(3):1262–1279. https://doi.org/10.1016/S0006-3495(01)76102-4

85. Fu L.Y., Cummins T.R., Moczydlowski E.G. Sensitivity of cloned muscle, heart and neuronal voltage-gated sodium channels to block by polyamines: a possible basis for modulation of excitability in vivo. Channels. 2012;6(1):41–49. https://doi.org/10.4161/chan.19001

86. Nichols C.G., Lee S. Polyamines and potassium channels: A 25-year romance. J. Biol. Chem. 2018;293(48):18779–18788. https://doi.org/10.1074/jbc.tm118.003344

87. Melnikov K.N., Vislobokov A.I., Kolpakova M.E., Borisova V.A., Ignatov Yu.D. Potassium of ionic channels of cellular membranes. Obzory po klinicheskoy farmakologii i lekarstvennoy terapii = Reviews on clinical pharmacology and drug therapy. 2009;7(1):3–27 (in Russ.).

88. Bergeron R.J., Wiegand J., Weimar W.R., Snyder P.S. Polyamine analogue antiarrhythmics. Pharmacol. Res. 1998;38(5):367–380. https://doi.org/10.1006/phrs.1998.0384

89. Mokrov G.V., Likhosherstov A.M., Barchukov V.V., Stolyaruk V.N., Tsorin I.B., Vititnova M.B., Kryzhanovskii S.A., Gudasheva T.A., Seredenin S.B. Synthesis and Cardiotropic Activity of Linear Methoxyphenyltriazaalkanes. Pharm. Chem. J. 2019;53(6):500–506. https://doi.org/10.1007/s11094-019-02027-7

90. Borisova E.Ya., Afanas’eva E.Yu., Borisova N.Yu., Arzamastsev E.V., Cherkashin M.I. New generation antiarrhythmic remedies of the N-substituted amidoamines class. Drug design. Mikroelementy v meditsine = Trace elements in medicine (Moscow). 2005;6(3):56–61 (in Russ.).

91. Afanas’eva E.Yu., Borisova E.Ya., Arzamastsev E.V., Borisova N.Yu., Cherkashin M.I. Toxicity of novel functionally substituted amines. Mikroelementy v meditsine = Trace elements in medicine (Moscow). 2005;6(3):74–77 (in Russ.).

92. Williams K., Zappia A.M., Pritchett D.B., Shen Y.M., Molinoff P.B. Sensitivity of the N-methyl-d-aspartate receptor to polyamines is controlled by NR2 subunits. Mol. Pharmacol. 1994;45(5):803–809.

93. Hansen K.B., Yi F., Perszyk R.E., Furukawa H., Wollmuth L.P., Gibb A.J., Traynelis S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018;150(8):1081–1105. https://doi.org/10.1085/jgp.201812032

94. Kristiansen L.V., Huerta I., Beneyto M., MeadorWoodruff J.H. NMDA receptors and schizophrenia. Curr. Opin. Pharmacol. 2007;7(1):48–55. https://doi.org/10.1016/j.coph.2006.08.013

95. Wang R., Reddy P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimer’s Dis. 2017;57(4):1041–1048. https://doi.org/10.3233/JAD-160763

96. Massey P.V., Johnson B.E., Moult P.R., Auberson Y.P., Brown M.W., Molnar E., Collingridge G.L., Bashir Z.I. Differential roles of NR2 A and NR2 B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J. Neurosci. 2004;24(36):7821–7828. https://doi.org/10.1523/jneurosci.1697-04.2004

97. Adibhatla R.M., Hatcher J.F., Sailor K., Dempsey R.J. Polyamines and central nervous system injury: spermine and spermidine decrease following transient focal cerebral ischemia in spontaneously hypertensive rats. Brain Res. 2002;938(1–2):81–86. https://doi.org/10.1016/s0006-8993(02)02447-2

98. Harada J., Sugimoto M. Polyamines prevent apoptotic cell death in cultured cerebellar granule neurons. Brain Res. 1997;753(2):251–259. https://doi.org/10.1016/S0006-8993(97)00011-5

99. Kish S.J., Wilson J.M., Fletcher P.J. The polyamine synthesis inhibitor α-difluoromethylornithine is neuroprotective against N-methyl-D-aspartate-induced brain damage in vivo. Eur. J. Pharmacol. 1991;209(1–2):101–103. https://doi.org/10.1016/0014-2999(91)90017-k

100. Sparapani M., Dall’Olio R., Gandolfi O., Ciani E., Contestabile A. Neurotoxicity of polyamines and pharmacological neuroprotection in cultures of rat cerebellar granule cells. Exp. Neurol. 1997;148(1):157–166. https://doi.org/10.1006/exnr.1997.6627

101. Benveniste H., Jørgensen M.B., Diemer N.H., Hansen A.J. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol. Scand. 1988;78(6):529–536. https://doi.org/10.1111/j.1600-0404.1988.tb03697.x

102. Chao J., Seiler N., Renault J., Kashiwagi K., Masuko T., Igarashi K., Williams K. N1 -Dansyl-Spermine and N1-(n-Octanesulfonyl)-Spermine, Novel Glutamate Receptor Antagonists: Block and Permeation of N-Methyl-D-Aspartate Receptors. Mol. Pharmacol. 1997;51(5):861–871. https://doi.org/10.1124/mol.51.5.861

103. Seiler N., Douaud F., Renault J., Delcros J.G., Havouis R., Uriac P., Moulinoux J.P. Polyamine sulfonamides with NMDA antagonist properties are potent calmodulin antagonists and cytotoxic agents. Int. J. Biochem. Cell Biol. 1998;30(3):393–406. https://doi.org/10.1016/s1357-2725(97)00150-7

104. Kirby B.P., Shaw G.G. Effect of spermine and N1 -dansyl-spermine on epileptiform activity in mouse cortical slices. Eur. J. Pharmacol. 2005;524(1–3):53–59. https://doi.org/10.1016/j.ejphar.2005.09.009

105. Jin L., Sugiyama H., Takigawa M., Katagiri D., Tomitori H., Nishimura K., Kaur N., Phanstiel O., Kitajima M., Takayama H., Okawara T., Williams K., Kashiwagi K., Igarashi K. Comparative studies of anthraquinone- and anthracene-tetraamines as blockers of N-methyl-D-aspartate receptors. J. Pharmacol. Exp. Ther. 2007;320(1):47–55. https://doi.org/10.1124/jpet.106.110528

106. Gilad G.M., Gilad V.H. Novel polyamine derivatives as neuroprotective agents. J. Pharmacol. Exp. Ther. 1999;291(1):39–43.

107. Kumamoto T., Nakajima M., Uga R., Ihayazaka N., Kashihara H., Katakawa K., Ishikawa T., Saiki R., Nishimura K., Igarashi K. Design, synthesis, and evaluation of polyaminememantine hybrids as NMDA channel blockers. Bioorg. Med. Chem. 2018;26(3):603–608. https://doi.org/10.1016/j.bmc.2017.12.021

108. Igarashi K., Shirahata A., Pahk A.J., Kashiwagi K., Williams K. Benzyl-polyamines: Novel, Potent N-MethylD-aspartate Receptor Antagonists. J. Pharmacol. Exp. Ther. 1997;283(2):533–540.

109. Cen J., Liu L., He L., Liu M., Wang C.J., Ji B.S. N1 -(quinolin-2-ylmethyl)butane-1,4-diamine, a polyamine analogue, attenuated injury in in vitro and in vivo models of cerebral ischemia. Int. J. Dev. Neurosci. 2012;30(7):584–595. https://doi.org/10.1016/j.ijdevneu.2012.08.008

110. Гришин Е.В., Волкова Т.М., Арсеньев А.С., Решетова О.С., Оноприенко В.В., Магазаник Л.Г., Антонов С.М., Федорова И.М. Структурно-функциональная характеристика аргиопина – блокатора ионных каналов из яда паука Argiope lobata. Биоорганическая Химия. 1986;12(8):1121–1124. [Grishin E.V., Volkova T.M., Arseniev A.S., Reshetova O.S., Onoprienko V.V., Magazanik L.G., Antonov S.M., Fedorova I.M. Structure-functional characteristics of argiopine―an ion channel blocker from the venom of spider Argiope lobata. Bioorganicheskya Khimiya = Russian Journal of Bioorganic Chemistry. 1986;12 (8):1121–1124 (in Russ.).]

111. Nelson J.K., Frølund S.U., Tikhonov D.B., Kristensen A.S., Strømgaard K. Inside Cover: Synthesis and Biological Activity of Argiotoxin 636 and Analogues: Selective Antagonists for Ionotropic Glutamate Receptors. Angew. Chem. Int. Ed. 2009;48(17):2994–2994. https://doi.org/10.1002/anie.200990085

112. Wimo A. Pharmajmes. Res. 2003;3(6):675–680. https://doi.org/10.1586/14737167.3.6.675

113. Iino M., Koike M., Isa T., Ozawa S. Voltage‐dependent blockage of Ca (2+)-permeable AMPA receptors by joro spider toxin in cultured rat hippocampal neurones. J. Physiol. 1996;496(2):431–437. https://doi.org/10.1113/jphysiol.1996.sp021696

114. Salamoni S.D., da Costa J.C., Palma M.S., Konno K., Nihei K.I., Azambuja N.A., Neto E.P., Venturin G.T., Tavares A.A., Abreu D.S., Breda R.V. The antiepileptic activity of JSTX-3 is mediated by N-methyl-D-aspartate receptors in human hippocampal neurons. Neuroreport. 2005;16(16):1869–1873. https://doi.org/10.1097/01.wnr.0000185012.98821.2b

115. Andersen T.F., Vogensen S.B., Jensen L.S., Knapp K.M., Strømgaard K. Design and synthesis of labeled analogs of PhTX-56, a potent and selective AMPA receptor antagonist. Bioorg. Med. Chem. 2005;13(17):5104–5112. https://doi.org/10.1016/j.bmc.2005.05.023

116. Nurowska E, Tumiatti V, Dworakowska B. Effect of polyamines on the nicotinic ACh receptor. J. Pre-Clin. Clin. Res. 2018;12(3):73–76. https://doi.org/10.26444/jpccr/93936

117. Harris J., Mundey M., Tomlinson S., Mellor I., Nakanishi K., Bell D., Usherwood P.N.R. Interaction of polyamide toxin Philanthotoxin-343 with cloned and mutant glutamate receptors expressed in Xenopus oocytes. Toxicon. 1996;7(34):730–731.

118. Karst H., Piek T. Structure-activity relationship of philanthotoxins—II. Effects on the glutamate gated ion channels of the locust muscle fibre membrane. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 1991;98(2–3):479–489. https://doi.org/10.1016/0742-8413(91)90237-n

119. Jensen L.S., Bølcho U., Egebjerg J., Strømgaard K. Design, Synthesis, and Pharmacological Characterization of Polyamine Toxin Derivatives: Potent Ligands for the Pore‐Forming Region of AMPA Receptors. ChemMedChem. 2006;1(4):419–428. https://doi.org/10.1002/cmdc.200500093

120. Strømgaard K., Mellor I. AMPA receptor ligands: synthetic and pharmacological studies of polyamines and polyamine toxins. Med. Res. Rev. 2004;24(5):589–620. https://doi.org/10.1002/med.20004

121. Olsen C.A., Mellor I.R., Wellendorph P., Usherwood P.N., Witt M., Franzyk H., Jaroszewski J.W. Tuning Wasp Toxin Structure for Nicotinic Receptor Antagonism: Cyclohexylalanine‐Containing Analogues as Potent and Voltage-Dependent Blockers. ChemMedChem. 2006;1(3):303–305. https://doi.org/10.1002/cmdc.200500067

122. Strømgaard K., Mellor I.R., Andersen K., Neagoe I., Pluteanu F., Usherwood P.N., Krogsgaard-Larsen P., Jaroszewski J.W. Solid-Phase synthesis and pharmacological evaluation of analogues of PhTX-12—A potent and selective nicotinic acetylcholine receptor antagonist. Bioorganic Med. Chem. Lett. 2002;12(8):1159–1162. https://doi.org/10.1016/S0960-894X(02)00120-8

123. Bolognesi M.L., Rosini M., Andrisano V., Bartolini M., Minarini A., Tumiatti V., Melchiorre C. MTDL design strategy in the context of Alzheimer's disease: from lipocrine to memoquin and beyond. Curr. Pharm. Des. 2009;15(6):601–613. https://doi.org/10.2174/138161209787315585

124. Kabir A., Jash C., Payghan P.V., Ghoshal N., Kumar G.S. Polyamines and its analogue modulates amyloid fibrillation in lysozyme: A comparative investigation. Biochim. Biophys. Acta. Gen. Subj. 2020;1864(5):129557. https://doi.org/10.1016/j.bbagen.2020.129557

125. Selkoe D.J., Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016;8(6):595–608. https://doi.org/10.15252/emmm.201606210

126. Blennow K., Mattsson N., Schöll M., Hansson O., Zetterberg H. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol. Sci. 2015;36(5):297–309. https://doi.org/10.1016/j.tips.2015.03.002

127. Di Paolo M.L., Cozza G., Milelli A., Zonta F., Sarno S., Minniti E., Ursini F., Rosini M., Minarini A. Benextramine and derivatives as novel human monoamine oxidases inhibitors: an integrated approach. FEBS J. 2019;286(24):4995–5015. https://doi.org/10.1111/febs.14994

128. Caslake R., Macleod A., Ives N., Stowe R., Counsell C. Monoamine oxidase B inhibitors versus other dopaminergic agents in early Parkinson’s disease. Cochrane Database Syst. Rev. 2009;4. Art. No. :CD006661. https://doi.org/10.1002/14651858.cd006661.pub2

129. Riederer P., Müller T. Use of monoamine oxidase inhibitors in chronic neurodegeneration. Expert Opin. Drug. Metab. Toxicol. 2017;13(2):233–240. https://doi.org/10.1080/17425255.2017.1273901

130. Thomas S.J., Shin M., McInnis M.G., Bostwick J.R. Combination therapy with monoamine oxidase inhibitors and other antidepressants or stimulants: strategies for the management of treatment‐resistant depression. Pharmacotherapy. 2015;35(4):433–449. https://doi.org/10.1002/phar.1576


Supplementary files

1. General scheme of biosynthesis of basic polyamines
Subject
Type Исследовательские инструменты
View (403KB)    
Indexing metadata
2. This is to certify that the paper titled Structure and biological action of analogs and derivatives of biogenic polyamines commissioned to us by Oleg S. Egorov, Nadezhda Yu. Borisova, Elena Ya. Borisova, Muzaffar L. Rezhabbaev, Elena Yu. Afanas’eva, Evgeny V. Arzamastsev has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc.
Subject CERTIFICATE OF EDITING
Type Other
View (441KB)    
Indexing metadata
  • This review article summarized the results from the studies of biological activity of the acyclic derivatives of saturated polyamines.
  • Biological functionality, biosynthesis and catabolism, cell transport, and localization of biogenic polyamines were considered for the living systems.
  • Structural analogs and derivatives of biogenic polyamines, which have antitumor, neuroprotective, antiarrhythmic, antiparasitic, antibacterial, and other biological activities were represented; the relationship between biological activity and the target of exposure were described.
  • It was found that the nature of the substituent, the number of cationic centers, and the length of the polyamine chain, have a great influence on the nature of the effect.

For citation:


Egorov O.S., Borisova N.Yu., Borisova E.Y., Rezhabbaev M.L., Afanas’eva E.Yu., Arzamastsev E.V. Structure and biological action of analogs and derivatives of biogenic polyamines. Fine Chemical Technologies. 2021;16(4):287-306. https://doi.org/10.32362/2410-6593-2021-16-4-287-306

Views: 309


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)