Structure and biological action of analogs and derivatives of biogenic polyamines
https://doi.org/10.32362/2410-6593-2021-16-4-287-306
Abstract
Objectives. Biogenic polyamines are widely present in nature. They are characteristic of both protozoan cells and multicellular organisms. These compounds have a wide range of biological functions and are necessary for normal growth and development of cells. Violation of polyamine homeostasis can cause significant abnormalities in cell functioning, provoking various pathological processes, including oncological and neuropsychiatric diseases. The impact on the “polyamine pathway” is an attractive basis for the creation of many pharmacological agents with a diverse spectrum of action. The purpose of this review is to summarize the results of the studies devoted to understanding the biological activity of compounds of the polyamine series, comparing their biological action with action on certain molecular targets. Due to the structural diversity of this group of substances, it is impossible to fully reflect the currently available data in one review. Therefore, in this work, the main attention is paid to the derivatives, acyclic saturated polyamines.
Results. The following aspects are considered: biological functionality, biosynthesis and catabolism, cell transport, and localization of biogenic polyamines in the living systems. Structural analogs and derivatives of biogenic polyamines with antitumor, neuroprotective, antiarrhythmic, antiparasitic, antibacterial, and other biological activities are represented; the relationship between biological activity and the target of exposure is reflected. It was found that the nature of the substituent, the number of cationic centers, and the length of the polyamine chain have a great influence on the nature of the effect.
Conclusions. At present, the use of polyamine structures is restrained by cytotoxicity and nonspecific toxic effects on the central nervous system. Further research in the field of biochemistry, cell transport, and a deeper understanding of receptor interaction mechanisms will help making polyamines as the basis for potential drug formulation.
About the Authors
O. S. EgorovRussian Federation
Oleg S. Egorov, Master Student, N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies
86, Vernadskogo pr., Moscow, 119571
Scopus Author ID 8880163900
Competing Interests:
The authors declare no conflicts of interest.
N. Yu. Borisova
Russian Federation
Nadezhda Yu. Borisova, Cand. Sci. (Chem.), Associate Professor, N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies
86, Vernadskogo pr., Moscow, 119571
Scopus Author ID 55780738100
Competing Interests:
The authors declare no conflicts of interest.
E. Ya. Borisova
Russian Federation
Elena Ya. Borisova, Dr. Sci. (Chem.), Professor, N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies
86, Vernadskogo pr., Moscow, 119571
Scopus Author ID 8880163900
Competing Interests:
The authors declare no conflicts of interest.
M. L. Rezhabbaev
Russian Federation
Muzaffar L. Rezhabbaev, Postgraduate Student, N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies
86, Vernadskogo pr., Moscow, 119571
Competing Interests:
The authors declare no conflicts of interest.
E. Yu. Afanas’eva
Russian Federation
Elena Yu. Afanas’eva, Cand. Sci. (Med.), Leading Researcher, National Medical Research Center of Cardiology
15a, 3 Cherepkovskaya ul., Moscow, 121552
Competing Interests:
The authors declare no conflicts of interest.
E. V. Arzamastsev
Russian Federation
Evgeny V. Arzamastsev, Dr. Sci. (Med.), Professor, Head of the Laboratory of Drug Toxicology, National Medical Research Center of Cardiology
15a, 3 Cherepkovskaya ul., Moscow, 121552
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов.
References
1. Shoji T., Hashimoto T. Polyamine-Derived Alkaloids in Plants: Molecular Elucidation of Biosynthesis. In: Polyamines: A Universal Molecular Nexus for Growth, Survival, and Specialized Metabolism. Tokyo, Japan: Springer; 2015. P. 189–200. https://doi.org/10.1007/978-4-431-55212-3_16
2. Kachel H.S., Buckingham S.D., Sattelle D.B. Insect toxins–selective pharmacological tools and drug/chemical leads. Curr. Opin. Insect. Sci. 2018;30:93–98. https://doi.org/10.1016/j.cois.2018.10.001
3. Fujiwara T., Hasegawa S., Hirashima N., Nakanishi M., Ohwada T. Gene transfection activities of amphiphilic steroid–polyamine conjugates. Biochim. Biophys. Acta. Biomembr. 2000;1468(1–2):396–402. https://doi.org/10.1016/S0005-2736(00)00278-9
4. Menzi M., Lightfoot H.L., Hall J. Polyamine– oligonucleotide conjugates: a promising direction for nucleic acid tools and therapeutics. Future Med. Chem. 2015;7(13):1733–1749. https://doi.org/10.4155/fmc.15.90
5. Pegg A.E. Functions of polyamines in mammals. J. Biol. Chem. 2016;291(29):14904–14912. https://doi.org/10.1074/jbc.r116.731661
6. Bachrach U. Naturally occurring polyamines: interaction with macromolecules. Curr. Protein Pept. Sci. 2005;6(6):559–566. https://doi.org/10.2174/138920305774933240
7. D’Agostino L., Di Pietro M., Di Luccia A. Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation. The FEBS J. 2005;272(15):3777–3787. https://doi.org/10.1111/j.1742-4658.2005.04782.x
8. Douki T., Bretonniere Y., Cadet J. Protection against radiation-induced degradation of DNA bases by polyamines. Radiat. Res. 2000;153(1):29–35. https://doi.org/10.1667/0033-7587(2000)153[0029:PARIDO]2.0.CO;2
9. Rudolphi-Szydło E., Filek M., Dyba B., Miszalski Z., Zembala M. Antioxidative action of polyamines in protection of phospholipid membranes exposed to ozone stress. Acta Biochim. Pol. 2020;67(2):259–262. https://doi.org/10.18388/abp.2020_5230
10. Rosenheim O. The isolation of spermine phosphate from semen and testis. Biochem. J. 1924;18(6):1253–1262. https://doi.org/10.1042/bj0181253
11. Bachrach U. The early history of polyamine research. Plant Physiol. Biochem. 2010;48(7):490–495. https://doi.org/10.1016/j.plaphy.2010.02.003
12. Michael A.J. Polyamines in eukaryotes, bacteria, and archaea. J. Biol. Chem. 2016;291(29):14896–14903. https://doi.org/10.1074/jbc.R116.734780
13. Kuksa V., Buchan R., Lin P. K.T. Synthesis of polyamines, their derivatives, analogues and conjugates. Synthesis. 2000;2000(09):1189–1207. https://doi.org/10.1055/s-2000-6405
14. Gupta K., Dey A., Gupta B. Plant polyamines in abiotic stress responses. Acta Physiol. Plant. 2015;35(7):2015–2036. https://doi.org/10.1007/s11738-013-1239-4
15. Urdiales J.L., Medina M.A., Sanchez-Jimenez F. Polyamine metabolism revisited. Eur. J. Gastroenterol. Hepatol. 2001;13(9):1015–1019. https://doi.org/10.1097/00042737-200109000-00003
16. Mimitsuka T., Sawai H., Hatsu M., Yamada K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci. Biotechnol. Biochem. 2007;71(9):2130–2135. https://doi.org/10.1271/bbb.60699
17. Chou, H.T., Li, J.Y., Peng, Y.C., Lu, C.D. Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the γ-glutamylation pathway in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2013;195(17):3906–3913. https://doi.org/10.1128/jb.00275-13
18. Konishi H., Nakajima T., Sano I. Metabolism of putrescine in the central nervous system. J. Biochem. 1977;81(2):355–360. https://doi.org/10.1093/oxfordjournals.jbchem.a131466
19. Casero Jr R.A., Pegg A.E. Spermidine/spermine N1-acetyltransferase—the turning point in polyamine metabolism. Faseb J. 1993;7(8):653–66. https://doi.org/10.1096/fasebj.7.8.8500690
20. Vujcic S., Diegelman P., Bacchi C.J., Kramer D.L., Porter C.W. Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem. J. 2002;367(3):665–675. https://doi.org/10.1042/bj20020720
21. Takao K., Sugita Y. Pentamine as a Substrate for Measuring Spermine Oxidase Activity. In: Polyamines: Methods and Protocols. New York, USA: Humana Press; 2018. P. 149–154. https://doi.org/10.1007/978-1-4939-7398-9_15
22. Casero Jr R.A., Pegg A.E. Polyamine catabolism and disease. Biochem. J. 2009;421(3):323–338. https://doi.org/10.1042/bj20090598
23. Seiler N., Eichentopf B. 4-Aminobutyrate in mammalian putrescine catabolism. Biochem. J. 1975;152(2):201–210. https://doi.org/10.1042/bj1520201
24. Burkard W.P., Gey K.F., Pletscher A. Diamine oxidase in the brain of vertebrates. J. Neurochem. 1963;10(3):183–186. https://doi.org/10.1111/j.1471-4159.1963.tb09481.x
25. Seiler N., Schmidt-Glenewinkel T., Sarhan S. On the formation of γ-aminobutyric acid from putrescine in brain. J. Biochem. 1979;86(1):277–278.
26. Seiler N., Lamberty U., Al‐Therib M.J. Acetyl-Coenzyme A:1, 4‐diaminobutane N‐acetyltransfetase: activity in rat brain during development, in experimental brain tumors and in brains of fish of different metabolic activity. J. Neurochem. 1975;24(4):797–800.
27. Seiler N., Al-Therib M.J. Acetyl-CoA:1, 4-diaminobutane N-acetyltransferase occurence in vertebrate organs and subcellular localization. Biochim. Biophys. Acta. Gen. Subj. 1974;354(2):206–212. https://doi.org/10.1016/0304-4165(74)90007-5
28. Sessa A., Perin A. Diamine oxidase in relation to diamine and polyamine metabolism. Agents and Actions. 1994;43(1–2):69–77. https://doi.org/10.1007/BF02005768
29. Missala K., Sourkes T.L., Putrescine catabolism in rats given heparin or aminoguanidine. Eur. J. Pharmacol. 1980;64(4):307–311. https://doi.org/10.1016/0014-2999(80)90238-1
30. Schayer R.W., Smiley R.L., Kennedy J. Diamine oxidase and cadaverine metabolism. J. Biol. Chem. 1954;206(1):461–464.
31. Ekegren T., Gomes-Trolin C., Nygren I., Askmark H. Maintained regulation of polyamines in spinal cord from patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 2004;222(1–2):49–53. https://doi.org/10.1016/j.jns.2004.04.011
32. Ekegren T., Gomes-Trolin C. Determination of polyamines in human tissues by precolumn derivatization with 9-fluorenylmethyl chloroformate and high-performance liquid chromatography. Anal. Biochem. 2005;338(2):179–185. https://doi.org/10.1016/j.ab.2004.11.040
33. Wallace H.M., Fraser A.V. Inhibitors of polyamine metabolism. Amino acids. 2004;26(4):353–365. https://doi.org/10.1007/s00726-004-0092-6
34. Palmer A.J., Wallace H.M. The polyamine transport system as a target for anticancer drug development. Amino acids. 2010;38(2):415–422. https://doi.org/10.1007/s00726-009-0400-2
35. Bardocz S., Grant G., Brown D.S., Pusztai A. Polyamines in food―implications for growth and health. J. Nutr. Biochem. 1993;4(2):66–71. https://doi.org/10.1016/0955-2863(93)90001-D
36. Ask A., Persson L., Heby O. Increased survival of L1210 leukemic mice by prevention of the utilization of extracellular polyamines. Studies using a polyamineuptake mutant, antibiotics and a polyamine-deficient diet. Cancer Lett. 1992;66(1):29–34. https://doi.org/10.1016/0304-3835(92)90276-2
37. Igarashi K., Ito K., Kashiwagi K. Polyamine uptake systems in Escherichia coli. Res. Microbiol. 2001;152(3–4):271–278. https://doi.org/10.1016/S0923-2508(01)01198-6
38. Poulin R., Casero R.A., Soulet D. Recent advances in the molecular biology of metazoan polyamine transport. Amino acids. 2012;42(2–3):711–723. https://doi.org/10.1007/s00726-011-0987-y
39. Soulet D., Gagnon B., Rivest S., Audette M., Poulin R. A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J. Biol. Chem. 2004;279(47):49355–49366. https://doi.org/10.1074/jbc.M401287200
40. Belting M., Mani K., Jönsson M., Cheng F., Sandgren S., Jonsson S., Ding K., Delcros J., Fransson L. Glypican-1 is a vehicle for polyamine uptake in mammalian cells a pivotal role for nitrosothiol-derived nitric oxide. J. Biol. Chem. 2003;278(47):47181–47189. https://doi.org/10.1074/jbc.M308325200
41. Uemura T., Yerushalmi H.F., Tsaprailis G., Stringer D.E., Pastorian K.E., Hawel L., Byus C.V., Gerner E.W. Identification and characterization of a diamine exporter in colon epithelial cells. J. Biol. Chem. 2008;283(39):26428–26435. https://doi.org/10.1074/jbc.M804714200
42. Bachrach U., Seiler N. Formation of acetylpolyamines and putrescine from spermidine by normal and transformed chick embryo fibroblasts. Cancer Res. 1981;41(3):1205–1208.
43. Israel M., Rosenfield J.S., Modest E.J. Analogs of Spermine and Spermidine. I. Synthesis of Polymethylenepolyamines by Reduction of Cyanoethylated α, ι-Alkylenediamines1,2. J. Med. Chem. 1964;7(6):710–716. https://doi.org/10.1021/jm00336a006
44. Maddock C. L., D’Angio G.J., Farber S., Handler A.H. Biological studies of Actinomycin D. Ann. N. Y. Acad. Sci. 1960;89(2):386–398. https://doi.org/10.1111/j.1749-6632.1960.tb20162.x
45. Serre D., Erbek S., Berthet N., Ronot X., Martel-Frachet V., Thomas F. Copper(II) complexes of N3 O tripodal ligands appended with pyrene and polyamine groups: anti-proliferative and nuclease activities. J. Inorg. Biochem. 2018;179:121–134. https://doi.org/10.1016/j.jinorgbio.2017.11.006
46. Silva T.M., Andersson S., Sukumaran S.K., Marques M.P., Persson L., Oredsson S. Norspermidine and novel Pd(II) and Pt(II) polynuclear complexes of norspermidine as potential antineoplastic agents against breast cancer. PLoS One. 2013;8(2):e55651. https://doi.org/10.1371/journal.pone.0055651
47. Seiler N. Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 1. Selective enzyme inhibitors. Curr. Drug. Targets. 2003;4(7):537–564. https://doi.org/10.2174/1389450033490885
48. Porter C.W., Cavanaugh P.F., Stolowich N., Ganis B., Kelly E., Bergeron R.J. Biological properties of N4-and N1 , N8 -spermidine derivatives in cultured L1210 leukemia cells. Cancer Res. 1985;45(5):2050–2057.
49. Porter C.W., Berger F.G., Pegg A.E., Ganis B., Bergeron R.J. Regulation of ornithine decarboxylase activity by spermidine and the spermidine analogue N1 ,N8-bis(ethyl)-spermidine. Biochem. J. 1987;242(2):433–440. https://doi.org/10.1042/bj2420433
50. Saab N.H., West E.E., Bieszk N.C., Preuss C.V., Mank A.R., Casero Jr R.A., Woster P.M. Synthesis and evaluation of unsymmetrically substituted polyamine analogs as modulators of human spermidine/spermineN1 -acetyltransferase (SSAT) and as potential antitumor agents. J. Med. Chem. 1993;36(20):2998–3004. https://doi.org/10.1021/jm00072a020
51. Reddy V.K., Valasinas A., Sarkar A., Basu H.S., Marton L.J., Frydman B. Conformationally restricted analogues of 1 N, 12N-bisethylspermine:synthesis and growth inhibitory effects on human tumor cell lines. J. Med. Chem. 1998;41(24):4723–4732. https://doi.org/10.1021/jm980172v
52. Valasinas A., Sarkar A., Reddy V.K., Marton L.J., Basu H. S., Frydman, B. Conformationally restricted analogues of 1 N, 14N-bisethylhomospermine (BE-4-4-4): synthesis and growth inhibitory effects on human prostate cancer cells. J. Med. Chem. 2001;44(3):390–403. https://doi.org/10.1021/jm000309t
53. Zagaja G.P., Shrivastav M., Marton L.J., RinkerSchaeffer C.W., Dolan M.E., Fleig M.F. Effects of polyamine analogues on prostatic adenocarcinoma cells in vitro and in vivo. Cancer Chemother. Pharmacol. 1998;41(6):505–512. https://doi.org/10.1007/s002800050774
54. Bergeron R.J., Wiegand J., McManis J.S., Weimar W.R., Smith R.E., Algee S.E., Fannin T.L., Slusher M.A., Snyder P.S. Polyamine analogue antidiarrheals: a structureactivity study. J. Med. Chem. 2001;44(2):232–244. https://doi.org/10.1021/jm000277+
55. Wolff A.C., Armstrong D.K., Fetting J.H., Carducci M.K., Riley C.D., Bender J.F., Casero Jr. R.A., Davidson N.E. A Phase II study of the polyamine analog N1 ,N11-diethylnorspermine (DENSpm) daily for five days every 21 days in patients with previously treated metastatic breast cancer. Clin. Cancer Res. 2003;9(16):5922–5928.
56. Khomutov R.M., Denisova G.F., Khomutov A.R., Belostotskaya K.M., Shlosman R.B., Artamonova E.Yu. Aminooxypropylamine is an effective inhibitor of ornithine decarboxylase in vitro and in vivo. Bioorganicheskya Khimiya = Russian Journal of Bioorganic Chemistry. 1985;11(11):1574–1576 (in Russ.).
57. Khomutov A.R., Shvetsov A.S., Vepsalainen J., Kramer D.L., Porter C.W., Hyvonen T., Keinanen T., Eloranta T.O., Khomutov R.M. New aminooxy analogs of biogenic polyamines. Russ. J. Bioorganic Chem. 1996;22(7):476–478.
58. Eloranta T.O., Khomutov A.R., Khomutov R.M., Hyvönen T. Aminooxy analogues of spermidine as inhibitors of spermine synthase and substrates of hepatic polyamine acetylating activity. J. Biochem. 1990;108(4):593–598.
59. Khomutov M.A., Weisell J., Hyvönen M., Keinänen T.A., Vepsäläinen J., Alhonen L., Khomutov A.R., Kochetkov S.N. Hydroxylamine derivatives for regulation of spermine and spermidine metabolism. Biochemistry (Moscow). 2013;78(13):1431–1446 https://doi.org/10.1134/S0006297913130051
60. Edwards M.L., Prakash N.J., Stemerick D.M., Sunkara S.P., Bitonti A.J., Davis G.F., Dumont J.A., Bey P. Polyamine analogs with antitumor activity. J. Med. Chem. 1990;33(5):1369–1375. https://doi.org/10.1021/jm00167a014
61. Seiler N., Douaud F., Havouis R., LeRoch N., Renault J., Vaultier M., Moulinoux J. Dimethylsilane polyamines, a new class of potential anticancer drugs. Int. J. Oncol. 1997;11(4):835–841. https://doi.org/10.3892/ijo.11.4.835
62. Levy S. B. Antibiotic resistance—the problem intensifies. Adv. Drug Deliv. Rev. 2005;57(10):1446–1450. https://doi.org/10.1016/j.addr.2005.04.001
63. Xu M., Davis R.A., Feng Y., Sykes M.L., Shelper T., Avery V.M., Camp D., Quinn R.J. Ianthelliformisamines A–C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J. Nat. Prod. 2012;75(5):1001–1005. https://doi.org/10.1021/np300147d
64. Choudhary A., Naughton L.M., Montánchez I., Dobson A.D., Rai D.K. Current status and future prospects of marine natural products (MNPs) as antimicrobials. Mar. Drugs. 2017;15(9):272. https://doi.org/10.3390/md15090272
65. Khan F.A., Ahmad S., Kodipelli N., Shivange G., Anindya R. Syntheses of a library of molecules on the marine natural product ianthelliformisamines platform and their biological evaluation. Org. Biomol. Chem. 2014;12(23):3847–3865. https://doi.org/10.1039/C3OB42537A
66. Li S.A., Cadelis M.M., Sue K., Blanchet M., Vidal N., Brunel J.M., Bourguet-Kondracki M., Copp B.R. 6-Bromoindolglyoxylamido derivatives as antimicrobial agents and antibiotic enhancers. Bioorg. Med. Chem. 2019;27(10):2090–2099. https://doi.org/10.1016/j.bmc.2019.04.004
67. Borselli D., Blanchet M., Bolla J.M., Muth A., Skruber K., Phanstiel IV, O., Brunel J.M. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram‐Negative Bacteria. ChemBioChem. 2017;18(3):276–283. https://doi.org/10.1002/cbic.201600532
68. Balakrishna R., Wood S.J., Nguyen T.B., Miller K.A., Kumar E.S., Datta A., David S.A. Structural correlates of antibacterial and membrane-permeabilizing activities in acylpolyamines. Antimicrob. Agents Chemother. 2006;50(3):852–861. https://doi.org/10.1128/aac.50.3.852-861.2006
69. Blanchet M., Borselli D., Brunel J.M. Polyamine derivatives: a revival of an old neglected scaffold to fight resistant Gram-negative bacteria? Future. Med. Chem. 2016;8(9):963–973. https://doi.org/10.4155/fmc-2016-0011
70. Laurence D.R., Bennett P.N. Clinical Pharmacology. Edinburgh, London, and New York: Churchill Livingstone; 1987. V. 1. 788 p.
71. Marton L.J., Pegg A.E. Polyamines as targets for therapeutic intervention. Annu. Rev. Pharmacol. Toxicol. 1995;35(1):55–91. https://doi.org/10.1146/annurev.pa.35.040195.000415
72. Bitonti A.J., Dumont J.A., Bush T.L., Edwards M.L., Stemerick D.M., McCann P.P., Sjoerdsma A. Bis(benzyl) polyamine analogs inhibit the growth of chloroquineresistant human malaria parasites (Plasmodium falciparum) in vitro and in combination with alphadifluoromethylornithine cure murine malaria. PNAS USA. 1989;86(2):651–655. https://doi.org/10.1073/pnas.86.2.651
73. Baumann R.J., Hanson W.L., McCann P.P., Sjoerdsma A., Bitonti A.J. Suppression of both antimonysusceptible and antimony-resistant Leishmania donovani by a bis(benzyl)polyamine analog. Antimicrob. Agents Chemother. 1990;34(5):722–727. https://doi.org/10.1128/aac.34.5.722
74. Baumann R.J., McCann P.P., Bitonti A.J. Suppression of Leishmania donovani by oral administration of a bis(benzyl)polyamine analog. Antimicrob. Agents Chemother. 1991;35(7):1403–1407. https://doi.org/10.1128/aac.35.7.1403
75. Majumder S., Kierszenbaum F. Inhibition of host cell invasion and intracellular replication of Trypanosoma cruzi by N,N’-bis(benzyl)-substituted polyamine analogs. Antimicrob. Agents Chemother. 1993;37(10):2235–2238. https://doi.org/10.1128/AAC.37.10.2235
76. Labadie G.R., Choi S.R., Avery M.A. Diamine derivatives with antiparasitic activities. Bioorganic Med. Chem. Lett. 2004;14(3):615-619. https://doi.org/10.1016/j.bmcl.2003.11.055
77. Klenke B., Barrett M.P., Brun R., Gilbert I.H. Antiplasmodial activity of a series of 1,3,5-triazine-substituted polyamines. J. Antimicrob. Chemother. 2003;52(2):290–293. https://doi.org/10.1093/jac/dkg307
78. Verlinden B.K., De Beer M., Pachaiyappan B., Besaans E., Andayi W.A., Reader J., Niemand J., Biljon R., Guy K., Egan T., Woster P.M., Birkholtz L.M. Interrogating alkyl and arylalkylpolyamino (bis)urea and (bis)thiourea isosteres as potent antimalarial chemotypes against multiple lifecycle forms of Plasmodium falciparum parasites. Bioorg. Med. Chem. 2015;23(16):5131–5143. https://doi.org/10.1016/j.bmc.2015.01.036
79. Niemand J., Burger P., Verlinden B.K., Reader J., Joubert A.M., Kaiser A., Louw A.I., Kirk K., Phanstiel IV O., Brikholtz L. Anthracene-polyamine conjugates inhibit in vitro proliferation of intraerythrocytic Plasmodium falciparum parasites. Antimicrob. Agents Chemother. 2013;57(6):2874–2877. https://doi.org/10.1128/aac.00106-13
80. Liew L.P., Pearce A.N., Kaiser M., Copp B.R. Synthesis and in vitro and in vivo evaluation of antimalarial polyamines. Eur. J. Med. Chem. 2013;69:22–31. https://doi.org/10.1016/j.ejmech.2013.07.055
81. Wang J., Kaiser M., Copp B.R. Investigation of indolglyoxamide and indolacetamide analogues of polyamines as antimalarial and antitrypanosomal agents. Mar. Drugs. 2014;12(6):3138–3160. https://doi.org/10.3390/md12063138
82. El Bissati K., Redel H., Ting L.M., Lykins J.D., McPhillie M.J., Upadhya R., Woster P.M., Yarlett N., Kim K., Weiss L.M. Novel synthetic polyamines have potent antimalarial activities in vitro and in vivo by decreasing intracellular spermidine and spermine concentrations. Front. Cell. Infect. Microbiol. 2019;9:9. https://doi.org/10.3389/fcimb.2019.00009
83. Eckert H., Bajorath J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov. Today. 2007;12(5–6):225–233. https://doi.org/10.1016/j.drudis.2007.01.011
84. Huang C.J., Moczydlowski E. Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel. Biophys. J. 2001;80(3):1262–1279. https://doi.org/10.1016/S0006-3495(01)76102-4
85. Fu L.Y., Cummins T.R., Moczydlowski E.G. Sensitivity of cloned muscle, heart and neuronal voltage-gated sodium channels to block by polyamines: a possible basis for modulation of excitability in vivo. Channels. 2012;6(1):41–49. https://doi.org/10.4161/chan.19001
86. Nichols C.G., Lee S. Polyamines and potassium channels: A 25-year romance. J. Biol. Chem. 2018;293(48):18779–18788. https://doi.org/10.1074/jbc.tm118.003344
87. Melnikov K.N., Vislobokov A.I., Kolpakova M.E., Borisova V.A., Ignatov Yu.D. Potassium of ionic channels of cellular membranes. Obzory po klinicheskoy farmakologii i lekarstvennoy terapii = Reviews on clinical pharmacology and drug therapy. 2009;7(1):3–27 (in Russ.).
88. Bergeron R.J., Wiegand J., Weimar W.R., Snyder P.S. Polyamine analogue antiarrhythmics. Pharmacol. Res. 1998;38(5):367–380. https://doi.org/10.1006/phrs.1998.0384
89. Mokrov G.V., Likhosherstov A.M., Barchukov V.V., Stolyaruk V.N., Tsorin I.B., Vititnova M.B., Kryzhanovskii S.A., Gudasheva T.A., Seredenin S.B. Synthesis and Cardiotropic Activity of Linear Methoxyphenyltriazaalkanes. Pharm. Chem. J. 2019;53(6):500–506. https://doi.org/10.1007/s11094-019-02027-7
90. Borisova E.Ya., Afanas’eva E.Yu., Borisova N.Yu., Arzamastsev E.V., Cherkashin M.I. New generation antiarrhythmic remedies of the N-substituted amidoamines class. Drug design. Mikroelementy v meditsine = Trace elements in medicine (Moscow). 2005;6(3):56–61 (in Russ.).
91. Afanas’eva E.Yu., Borisova E.Ya., Arzamastsev E.V., Borisova N.Yu., Cherkashin M.I. Toxicity of novel functionally substituted amines. Mikroelementy v meditsine = Trace elements in medicine (Moscow). 2005;6(3):74–77 (in Russ.).
92. Williams K., Zappia A.M., Pritchett D.B., Shen Y.M., Molinoff P.B. Sensitivity of the N-methyl-d-aspartate receptor to polyamines is controlled by NR2 subunits. Mol. Pharmacol. 1994;45(5):803–809.
93. Hansen K.B., Yi F., Perszyk R.E., Furukawa H., Wollmuth L.P., Gibb A.J., Traynelis S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018;150(8):1081–1105. https://doi.org/10.1085/jgp.201812032
94. Kristiansen L.V., Huerta I., Beneyto M., MeadorWoodruff J.H. NMDA receptors and schizophrenia. Curr. Opin. Pharmacol. 2007;7(1):48–55. https://doi.org/10.1016/j.coph.2006.08.013
95. Wang R., Reddy P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimer’s Dis. 2017;57(4):1041–1048. https://doi.org/10.3233/JAD-160763
96. Massey P.V., Johnson B.E., Moult P.R., Auberson Y.P., Brown M.W., Molnar E., Collingridge G.L., Bashir Z.I. Differential roles of NR2 A and NR2 B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J. Neurosci. 2004;24(36):7821–7828. https://doi.org/10.1523/jneurosci.1697-04.2004
97. Adibhatla R.M., Hatcher J.F., Sailor K., Dempsey R.J. Polyamines and central nervous system injury: spermine and spermidine decrease following transient focal cerebral ischemia in spontaneously hypertensive rats. Brain Res. 2002;938(1–2):81–86. https://doi.org/10.1016/s0006-8993(02)02447-2
98. Harada J., Sugimoto M. Polyamines prevent apoptotic cell death in cultured cerebellar granule neurons. Brain Res. 1997;753(2):251–259. https://doi.org/10.1016/S0006-8993(97)00011-5
99. Kish S.J., Wilson J.M., Fletcher P.J. The polyamine synthesis inhibitor α-difluoromethylornithine is neuroprotective against N-methyl-D-aspartate-induced brain damage in vivo. Eur. J. Pharmacol. 1991;209(1–2):101–103. https://doi.org/10.1016/0014-2999(91)90017-k
100. Sparapani M., Dall’Olio R., Gandolfi O., Ciani E., Contestabile A. Neurotoxicity of polyamines and pharmacological neuroprotection in cultures of rat cerebellar granule cells. Exp. Neurol. 1997;148(1):157–166. https://doi.org/10.1006/exnr.1997.6627
101. Benveniste H., Jørgensen M.B., Diemer N.H., Hansen A.J. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol. Scand. 1988;78(6):529–536. https://doi.org/10.1111/j.1600-0404.1988.tb03697.x
102. Chao J., Seiler N., Renault J., Kashiwagi K., Masuko T., Igarashi K., Williams K. N1 -Dansyl-Spermine and N1-(n-Octanesulfonyl)-Spermine, Novel Glutamate Receptor Antagonists: Block and Permeation of N-Methyl-D-Aspartate Receptors. Mol. Pharmacol. 1997;51(5):861–871. https://doi.org/10.1124/mol.51.5.861
103. Seiler N., Douaud F., Renault J., Delcros J.G., Havouis R., Uriac P., Moulinoux J.P. Polyamine sulfonamides with NMDA antagonist properties are potent calmodulin antagonists and cytotoxic agents. Int. J. Biochem. Cell Biol. 1998;30(3):393–406. https://doi.org/10.1016/s1357-2725(97)00150-7
104. Kirby B.P., Shaw G.G. Effect of spermine and N1 -dansyl-spermine on epileptiform activity in mouse cortical slices. Eur. J. Pharmacol. 2005;524(1–3):53–59. https://doi.org/10.1016/j.ejphar.2005.09.009
105. Jin L., Sugiyama H., Takigawa M., Katagiri D., Tomitori H., Nishimura K., Kaur N., Phanstiel O., Kitajima M., Takayama H., Okawara T., Williams K., Kashiwagi K., Igarashi K. Comparative studies of anthraquinone- and anthracene-tetraamines as blockers of N-methyl-D-aspartate receptors. J. Pharmacol. Exp. Ther. 2007;320(1):47–55. https://doi.org/10.1124/jpet.106.110528
106. Gilad G.M., Gilad V.H. Novel polyamine derivatives as neuroprotective agents. J. Pharmacol. Exp. Ther. 1999;291(1):39–43.
107. Kumamoto T., Nakajima M., Uga R., Ihayazaka N., Kashihara H., Katakawa K., Ishikawa T., Saiki R., Nishimura K., Igarashi K. Design, synthesis, and evaluation of polyaminememantine hybrids as NMDA channel blockers. Bioorg. Med. Chem. 2018;26(3):603–608. https://doi.org/10.1016/j.bmc.2017.12.021
108. Igarashi K., Shirahata A., Pahk A.J., Kashiwagi K., Williams K. Benzyl-polyamines: Novel, Potent N-MethylD-aspartate Receptor Antagonists. J. Pharmacol. Exp. Ther. 1997;283(2):533–540.
109. Cen J., Liu L., He L., Liu M., Wang C.J., Ji B.S. N1 -(quinolin-2-ylmethyl)butane-1,4-diamine, a polyamine analogue, attenuated injury in in vitro and in vivo models of cerebral ischemia. Int. J. Dev. Neurosci. 2012;30(7):584–595. https://doi.org/10.1016/j.ijdevneu.2012.08.008
110. Гришин Е.В., Волкова Т.М., Арсеньев А.С., Решетова О.С., Оноприенко В.В., Магазаник Л.Г., Антонов С.М., Федорова И.М. Структурно-функциональная характеристика аргиопина – блокатора ионных каналов из яда паука Argiope lobata. Биоорганическая Химия. 1986;12(8):1121–1124. [Grishin E.V., Volkova T.M., Arseniev A.S., Reshetova O.S., Onoprienko V.V., Magazanik L.G., Antonov S.M., Fedorova I.M. Structure-functional characteristics of argiopine―an ion channel blocker from the venom of spider Argiope lobata. Bioorganicheskya Khimiya = Russian Journal of Bioorganic Chemistry. 1986;12 (8):1121–1124 (in Russ.).]
111. Nelson J.K., Frølund S.U., Tikhonov D.B., Kristensen A.S., Strømgaard K. Inside Cover: Synthesis and Biological Activity of Argiotoxin 636 and Analogues: Selective Antagonists for Ionotropic Glutamate Receptors. Angew. Chem. Int. Ed. 2009;48(17):2994–2994. https://doi.org/10.1002/anie.200990085
112. Wimo A. Pharmajmes. Res. 2003;3(6):675–680. https://doi.org/10.1586/14737167.3.6.675
113. Iino M., Koike M., Isa T., Ozawa S. Voltage‐dependent blockage of Ca (2+)-permeable AMPA receptors by joro spider toxin in cultured rat hippocampal neurones. J. Physiol. 1996;496(2):431–437. https://doi.org/10.1113/jphysiol.1996.sp021696
114. Salamoni S.D., da Costa J.C., Palma M.S., Konno K., Nihei K.I., Azambuja N.A., Neto E.P., Venturin G.T., Tavares A.A., Abreu D.S., Breda R.V. The antiepileptic activity of JSTX-3 is mediated by N-methyl-D-aspartate receptors in human hippocampal neurons. Neuroreport. 2005;16(16):1869–1873. https://doi.org/10.1097/01.wnr.0000185012.98821.2b
115. Andersen T.F., Vogensen S.B., Jensen L.S., Knapp K.M., Strømgaard K. Design and synthesis of labeled analogs of PhTX-56, a potent and selective AMPA receptor antagonist. Bioorg. Med. Chem. 2005;13(17):5104–5112. https://doi.org/10.1016/j.bmc.2005.05.023
116. Nurowska E, Tumiatti V, Dworakowska B. Effect of polyamines on the nicotinic ACh receptor. J. Pre-Clin. Clin. Res. 2018;12(3):73–76. https://doi.org/10.26444/jpccr/93936
117. Harris J., Mundey M., Tomlinson S., Mellor I., Nakanishi K., Bell D., Usherwood P.N.R. Interaction of polyamide toxin Philanthotoxin-343 with cloned and mutant glutamate receptors expressed in Xenopus oocytes. Toxicon. 1996;7(34):730–731.
118. Karst H., Piek T. Structure-activity relationship of philanthotoxins—II. Effects on the glutamate gated ion channels of the locust muscle fibre membrane. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 1991;98(2–3):479–489. https://doi.org/10.1016/0742-8413(91)90237-n
119. Jensen L.S., Bølcho U., Egebjerg J., Strømgaard K. Design, Synthesis, and Pharmacological Characterization of Polyamine Toxin Derivatives: Potent Ligands for the Pore‐Forming Region of AMPA Receptors. ChemMedChem. 2006;1(4):419–428. https://doi.org/10.1002/cmdc.200500093
120. Strømgaard K., Mellor I. AMPA receptor ligands: synthetic and pharmacological studies of polyamines and polyamine toxins. Med. Res. Rev. 2004;24(5):589–620. https://doi.org/10.1002/med.20004
121. Olsen C.A., Mellor I.R., Wellendorph P., Usherwood P.N., Witt M., Franzyk H., Jaroszewski J.W. Tuning Wasp Toxin Structure for Nicotinic Receptor Antagonism: Cyclohexylalanine‐Containing Analogues as Potent and Voltage-Dependent Blockers. ChemMedChem. 2006;1(3):303–305. https://doi.org/10.1002/cmdc.200500067
122. Strømgaard K., Mellor I.R., Andersen K., Neagoe I., Pluteanu F., Usherwood P.N., Krogsgaard-Larsen P., Jaroszewski J.W. Solid-Phase synthesis and pharmacological evaluation of analogues of PhTX-12—A potent and selective nicotinic acetylcholine receptor antagonist. Bioorganic Med. Chem. Lett. 2002;12(8):1159–1162. https://doi.org/10.1016/S0960-894X(02)00120-8
123. Bolognesi M.L., Rosini M., Andrisano V., Bartolini M., Minarini A., Tumiatti V., Melchiorre C. MTDL design strategy in the context of Alzheimer's disease: from lipocrine to memoquin and beyond. Curr. Pharm. Des. 2009;15(6):601–613. https://doi.org/10.2174/138161209787315585
124. Kabir A., Jash C., Payghan P.V., Ghoshal N., Kumar G.S. Polyamines and its analogue modulates amyloid fibrillation in lysozyme: A comparative investigation. Biochim. Biophys. Acta. Gen. Subj. 2020;1864(5):129557. https://doi.org/10.1016/j.bbagen.2020.129557
125. Selkoe D.J., Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016;8(6):595–608. https://doi.org/10.15252/emmm.201606210
126. Blennow K., Mattsson N., Schöll M., Hansson O., Zetterberg H. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol. Sci. 2015;36(5):297–309. https://doi.org/10.1016/j.tips.2015.03.002
127. Di Paolo M.L., Cozza G., Milelli A., Zonta F., Sarno S., Minniti E., Ursini F., Rosini M., Minarini A. Benextramine and derivatives as novel human monoamine oxidases inhibitors: an integrated approach. FEBS J. 2019;286(24):4995–5015. https://doi.org/10.1111/febs.14994
128. Caslake R., Macleod A., Ives N., Stowe R., Counsell C. Monoamine oxidase B inhibitors versus other dopaminergic agents in early Parkinson’s disease. Cochrane Database Syst. Rev. 2009;4. Art. No. :CD006661. https://doi.org/10.1002/14651858.cd006661.pub2
129. Riederer P., Müller T. Use of monoamine oxidase inhibitors in chronic neurodegeneration. Expert Opin. Drug. Metab. Toxicol. 2017;13(2):233–240. https://doi.org/10.1080/17425255.2017.1273901
130. Thomas S.J., Shin M., McInnis M.G., Bostwick J.R. Combination therapy with monoamine oxidase inhibitors and other antidepressants or stimulants: strategies for the management of treatment‐resistant depression. Pharmacotherapy. 2015;35(4):433–449. https://doi.org/10.1002/phar.1576
Supplementary files
|
1. General scheme of biosynthesis of basic polyamines | |
Subject | ||
Type | Исследовательские инструменты | |
View
(403KB)
|
Indexing metadata ▾ |
|
2. This is to certify that the paper titled Structure and biological action of analogs and derivatives of biogenic polyamines commissioned to us by Oleg S. Egorov, Nadezhda Yu. Borisova, Elena Ya. Borisova, Muzaffar L. Rezhabbaev, Elena Yu. Afanas’eva, Evgeny V. Arzamastsev has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc. | |
Subject | CERTIFICATE OF EDITING | |
Type | Other | |
View
(441KB)
|
Indexing metadata ▾ |
- This review article summarized the results from the studies of biological activity of the acyclic derivatives of saturated polyamines.
- Biological functionality, biosynthesis and catabolism, cell transport, and localization of biogenic polyamines were considered for the living systems.
- Structural analogs and derivatives of biogenic polyamines, which have antitumor, neuroprotective, antiarrhythmic, antiparasitic, antibacterial, and other biological activities were represented; the relationship between biological activity and the target of exposure were described.
- It was found that the nature of the substituent, the number of cationic centers, and the length of the polyamine chain, have a great influence on the nature of the effect.
Review
For citations:
Egorov O.S., Borisova N.Yu., Borisova E.Ya., Rezhabbaev M.L., Afanas’eva E.Yu., Arzamastsev E.V. Structure and biological action of analogs and derivatives of biogenic polyamines. Fine Chemical Technologies. 2021;16(4):287-306. https://doi.org/10.32362/2410-6593-2021-16-4-287-306