Para-tert-butylcumene synthesis
https://doi.org/10.32362/2410-6593-2020-16-1-26-35
Abstract
Objectives. This study describes a new approach to obtain para-tert-butylcumene by alkylation of cumene with isobutylene in the presence of catalysts, such as Amberlyst 36 Dry, KU-2-8, aluminum chloride, and tert-butyl alcohol and concentrated sulfuric acid.
Methods. To determine the qualitative and quantitative composition of the compounds and reaction masses, the following analysis methods were used: gas–liquid chromatography (on the Kristall 2000M hardware-software complex), chromatomass spectrometry on an Agilent 6850 instrument equipped with an Agilent 19091S-433E capillary column (30 m × 250 μm × 0.25 μm), and nuclear magnetic resonance spectroscopy (on a Bruker DRX 400 instrument with an operating frequency of 400 MHz).
Results. A significant quantity of meta-tert-butylcumene was obtained by the alkylation of cumene with isobutylene using several catalysts, along with para-tert-butylcumene. This study also showed that the use of the catalysts Amberlyst 36 Dry and KU-2-8 during alkylation in a closed system (autoclave) led to the formation of isobutylene oligomers, often in quantity greater than the target reaction product. Simultaneously, the alkylation of cumene with tert-butyl alcohol in the presence of concentrated sulfuric acid enabled the obtainment of only one isomer, para-tertbutylcumene, which is essential for the further production of high-purity para-tert-butyl phenol.
Conclusions. Sulfuric acid alkylation of cumene with tert-butyl alcohol enabled the obtainment of an individual para-isomer of tert-butylcumene with a yield of 87–89% for the loaded tert-butyl-alcohol with a cumene conversion of ~30%.
About the Authors
E. M. YarkinaRussian Federation
Elizaveta M. Yarkina, Postgraduate Student, Department of General and Physical Chemistry
88, Moskovskii pr., Yaroslavl, 150023
E. A. Kurganova
Russian Federation
Ekaterina A. Kurganova, Dr. Sci. (Chem.), Professor, Department of General and Physical Chemistry. ResearherID B-4021-2018, Scopus Author ID 24338325800
88, Moskovskii pr., Yaroslavl, 150023
A. S. Frolov
Russian Federation
Aleksandr S. Frolov, Cand. Sci. (Chem.), Senior Lecturer, Department of General and Physical Chemistry. ResearherID I-8533-2018, Scopus Author ID 56412435400
88, Moskovskii pr., Yaroslavl, 150023
G. N. Koshel
Russian Federation
Georgiy N. Koshel, Dr. Sci. (Chem.), Professor, Department of General and Physical Chemistry. ResearherID I-7782-2017, Scopus Author ID 6506863584
88, Moskovskii pr., Yaroslavl, 150023
T. N. Nesterova
Russian Federation
Tatyana N. Nesterova, Cand. Sci. (Chem.), Associate Professor, Professor, Department of Technology of Organic and Petrochemical Synthesis. Scopus Author ID 15045158000
244, Molodogvardeiskaya ul., Samara, 443100
V. A. Shakun
Russian Federation
Vladimir A. Shakun, Assistant, Department of Technology of Organic and Petrochemical Synthesis. Scopus Author ID 56829536300
244, Molodogvardeiskaya ul., Samara, 443100
S. A. Spiridonov
Russian Federation
Stanislav A. Spiridonov, Master Student, Department of Technology of Organic and Petrochemical Synthesis
244, Molodogvardeiskaya ul., Samara, 443100
References
1. Kurganova E.A., Sapunov V.N., Koshel G.N., Frolov A.S. Selective aerobic oxidation of cyclohexyland sec-alkylarenes to hydroperoxides in the presence of N-hydroxyphthalimide. Russ. Chem. Bull. 2016;65(9):2115‒2128. https://doi.org/10.1007/s11172-016-1560-3
2. Alonso-Magdalena Р., Marroquí L., Tudurí E., Quesada I., Sargis R.M., Nadal A. Toxic Effects of Common Environmental Pollutants in Pancreatic β-Cells and the Onset of Diabetes Mellitus. Encyclopedia of Endocrine Diseases. 2019;1:764‒775. https://doi.org/10.1016/B978-0-12-801238-3.64325-8
3. Saha M. Alkylation of Phenol with n-Alcohols (C5–C7) in the Presence of Sulphuric Acid. Dhaka Univ. J. Sci. 2010;58(2):247‒251.
4. Toor J.S., Sikka S.C. Developmental and Reproductive Disorders‒Role of Endocrine Disruptors in Testicular Toxicity. In: Gupta R. (Ed.) Reproductive and Developmental Toxicology. Academic Press; 2017. P. 1111‒1121. https://doi.org/10.1016/B978-0-12-804239-7.00059-7
5. Tungmunnithum D., Thongboonyou A., Pholboon A., Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects. Medicines. 2018;5(3):93. https://doi.org/10.3390/medicines5030093
6. Flecknell P, Dyson M.C., Marini R.R., Swindle M., Wilson R.P. Preanesthesia, Anesthesia, Analgesia, and Euthanasia. In: Fox J.G., Otto G.M., Whary M.T. (Eds.). Laboratory Animal Medicine. Academic Press; 2015. P. 1135‒1200. https://doi.org/10.1016/B978-0-12-409527-4.00024-9
7. Dews T.E. 16 Analgesia and Anesthesia for Office Hysteroscopy and Hysteroscopic Procedures. Hysteroscopy: Office Evaluation and Management of the Uterine Cavity. 2008;1158:179‒185.
8. Sokolov V.Z., Kharlampovich G.D. Proizvodstvo i ispol’zovanie aromaticheskikh uglevodorodov (Production and use of aromatic hydrocarbons). Moscow: Khimiya; 1980. 336 с. (in Russ.).
9. Terekhov A.V. Zanaveskin L.N., Khadzhiev S.N. Selecting an Optimum Catalyst for Producing para-tertButylphenol by Phenol Alkylation with tert-Butanol. Pet. Chem. 2017;57(8):714‒717. https://doi.org/10.1134/S096554411708014X
10. Jérôme Fr., Luque R. Bio-Based Solvents. Wiley Series in Renewable Resource; 2017. 183 р.
11. Kharayat Y. Phenols & phenolic compounds. Parivesh; 2016. 72 р. URL: https://cpcb.nic.in/uploads/News_Letter_Phenols_Phenolic_Compounds_2017.pdf
12. Wang L., Ma W., Lei D., Zhang D. Preparation and characterization of para-tertiary-butylphenol formaldehyde resins using dual catalytic-extraction method. Progress in Organic Coatings. 2015;87:1‒9. https://doi.org/10.1016/j.porgcoat.2015.04.024
13. Saha M., Hossain M.K., Ashaduzzama M., Afroza S.T., Galib M., Sharif N. Alkylation of Phenol with Olefins in the Presence of Sulphuric Acid. Bangladesh J. Sci. Ind. Res. 2009;44(1):131–136. https://doi.org/10.3329/bjsir.v44i1.2722
14. Atwood J.L., Barbour L.J., Thallapally P.K., Wirsig T.B. A crystalline organic substrate absorbs methane under STP conditions. Chem. Commun. 2005;1:51‒53. https://doi.org/10.1039/B416752J
15. Español E.S., Villamil M.M. Calixarenes: Generalities and Their Role in Improving the Solubility, Biocompatibility, Stability, Bioavailability, Detection, and Transport of Biomolecules. Biomolecules. 2019;9(3):90. https://doi.org/10.3390/biom9030090
16. Voronin I.O., Nesterova T.N., Zhuravskii E.A., Strelchik B.S. Efficiency of sulfonic cation-exchange resins used in para-tert-butylphenol production: a comparison based on the kinetics of transalkylation in the phenol-tert-butylphenols system. Kinetics and Catalysis. 2014;55(6):705‒711. https://doi.org/10.1134/S0023158414060147
17. Yarkina E.M., Kurganova E.A., Frolov A.S., Lebedeva N.V., Koshel’ G.N. Aerobic Liquid-Phase Oxidation of Para-tert-Butylcumene to Hydroperoxide. Pet. Chem. 2019;59(11)1245‒1248. https://doi.org/10.1134/S0965544119110161
18. Lebedev A.T. Mass-spektrometriya v organicheskoi khimii (Mass spectrometry in organic chemistry). Мoscow: Tekhnosfera; 2015. 704p. ISBN 978-5-94836-409-4
19. NIST Standard Reference Database 1A. NIST/EPA/ NIH EI AND NIST TANDEM LIBRARIES (NIST 17) and NIST MASS SPECTRAL SEARCH PROGRAM Version 2.3 Build May 4, 2017 for use with Microsoft(R) Windows(TM) 306,622 EI spectra for 267376 compounds.
20. Zech E.A., Okla B. Alkylation of airomatic hydrocarbons using a compacted montmorellonete clay catalyst: US Patent US3849507А, 1974.
21. Burress G.T. Alkylation of aromatic hydrocarbons: US Patent US4469908A, 1984.
22. Zefirov N.S., Kulov N.N. (Eds.) Khimicheskaya entsiklopediya: v 5 t., V. 5: TRI-YATR (Chemical Encyclopedia: in 5 v., V. 5: TRI-YATR) Moscow: Bol’shaya Rossiiskaya Entsiklopediya; 1998. 783 p. ISBN 5-85270-310-9.
23. Yarkina E.M., Kurganova E.A., Frolov A.S., Koshel’ G.N., Denisova E.M. Acid Decomposition of p-tertButylcumene Hydroperoxide to p-tert-Butylphenol and Acetone. Russ. J. Appl. Chem. 2019;92(11)1524‒1530. https://doi.org/10.1134/S1070427219110090
Supplementary files
|
1. Fig. 1. Alkylation reactor: (1) molybdenum glass reactor, (2) metal bearing, (3) swivel nut, (4) copper ring, (5) gasket seal. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(188KB)
|
Indexing metadata ▾ |
|
2. This is to certify that the paper titled Para-tert-butylcumene synthesis commissioned to us by Elizaveta M. Yarkina, Ekaterina A. Kurganova, Aleksandr S. Frolov, Georgiy N. Koshel, Tatyana N. Nesterova, Vladimir A. Shakun and Stanislav A. Spiridonov has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc. | |
Subject | CERTIFICATE OF EDITING | |
Type | Other | |
View
(414KB)
|
Indexing metadata ▾ |
- A significant quantity of meta-tert-butyl was formed by the alkylation of cumene with isobutylene using Amberlyst 36 Dry, KU-2-8 catalysts, and aluminum chloride, along with para-tert-butylcumene.
- The use of Amberlyst 36 Dry and KU-2-8 catalysts during alkylation in a closed system (autoclave) led to the formation of isobutylene oligomers, often in quantity greater than the target reaction product.
- The alkylation of cumene with tert-butyl alcohol in the presence of concentrated sulfuric acid enabled the obtainment of only one isomer, para-tert-butylcumene, which is essential for the further production of high-purity para-tert-butyl phenol.
Review
For citations:
Yarkina E.M., Kurganova E.A., Frolov A.S., Koshel G.N., Nesterova T.N., Shakun V.A., Spiridonov S.A. Para-tert-butylcumene synthesis. Fine Chemical Technologies. 2021;16(1):26-35. https://doi.org/10.32362/2410-6593-2020-16-1-26-35