Остеопластические материалы нового поколения на основе биологических и синтетических матриксов
https://doi.org/10.32362/2410-6593-2021-16-1-36-54
Аннотация
Цели. Цель литературного обзора – анализ остеопластических материалов и хирургических имплантатов нового поколения, изучение особенностей, характеристик и результатов их клинического применения.
Методы. Обзор суммирует объем научно-исследовательских материалов, представленных на порталах «PubMed» и «eLIBRARY». Проанализирован и обобщен материал 129 научных статей по следующим разделам: биологические, кальций-фосфатные, полимерные и биокомпозитные матриксы в качестве носителей целевых фармацевтических субстанций (рекомбинантных белковых остеоиндукторов, антибиотиков и биологически активных химических реагентов). Глубина поиска 10 лет.
Результаты. Среди всех видов остеопластических матриксов, применяемых в настоящее время в мировой хирургической остеологии, куда входит нейрохирургия, травматология и ортопедия, стоматология, челюстно-лицевая и детская хирургия, деминерализованный костный матрикс (ДКМ) занимает 26%. Полимерные и биокомпозитные матриксы сегодня представляются наиболее перспективными материалами в сравнении с ДКМ. Особое внимание в разработке новых видов матриксов уделяется возможности фиксации остеогенных факторов и целевых фармацевтических субстанций на материале-носителе с целью их контролируемого и пролонгированного выпуска на участке хирургической имплантации. Полимерные и биокомпозитные материалы способны замедлять время высвобождения фармсубстанций в месте имплантации, способствуя снижению токсичности и пролонгации терапевтического эффекта, являясь перспективной альтернативой аутогенной кости. Использование композитных носителей различного состава in vivo демонстрирует высокие показатели остеогенеза, способствует запуску биоминерализации и позволяет варьировать скорость деградации материала.
Выводы. Остеопластические материалы различного состава в сочетании с лекарственными средствами показали ускорение регенерации и минерализации костной ткани in vivo, исключая системные побочные реакции. И, хотя некоторые материалы уже зарегистрированы в качестве коммерческих препаратов, все еще сохраняется ряд нерешенных проблем. Из-за ограниченности клинических исследований материалов на людях остаются открытыми такие вопросы как недостаточное понимание токсичности материалов, времени их резорбции, скорости доставки лекарственного средства и его высвобождения, а также возможные неблагоприятные эффекты от использования имплантатов различного состава.
Об авторах
Д. Д. ЛыкошинРоссия
Лыкошин Дмитрий Дмитриевич, инженер лаборатории биофармацевтических технологий. Scopus Author ID 57219992166, ResearcherID AAB-1166-2021
117997, Москва, ул. Миклухо-Маклая, д. 16/10, к. 1
В. В. Зайцев
Россия
Зайцев Владимир Валентинович, к.м.н., ведущий научный сотрудник, руководитель группы остеопластических материалов. Scopus Author ID 56648236900, ResearcherID AAI-4110-2020
127299, Москва, ул. Приорова, д. 10
М. А. Костромина
Россия
Костромина Мария Андреевна, младший научный сотрудник лаборатории биофармацевтических технологий. Scopus Author ID 55123242300 ResearcherID R-9418-2016
117997, Москва, ул. Миклухо-Маклая, д. 16/10, к. 1
Р. С. Есипов
Россия
Есипов Роман Станиславович, д.х.н., старший научный сотрудник, заведующий лабораторией биофармацевтических технологий. Scopus Author ID 6701850033, Researcher ID G-4950-2017
117997, Москва, ул. Миклухо-Маклая, д. 16/10, к. 1
Список литературы
1. Henkel J., Woodruff M.A., Epari D.R., Steck R., Glatt V., Dickinson I.C., Choong P.F., Schuetz M.A., Hutmacher D.W. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective Bone Res. 2013;1(3):216–248. https://doi.org/10.4248/BR201303002
2. Barabaschi G.D., Manoharan V., Li Q., Bertassoni L.E. Engineering Pre-vascularized Scaffolds for Bone Regeneration. Adv. Exp. Med. Biol. 2015;881:79–94. https://doi.org/10.1007/978-3-319-22345-2_5
3. O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mat. Today. 2011;14(3):88–95. https://doi.org/10.1016/S1369-7021(11)70058-X
4. García-Gareta E., Coathup M.J., Blunn G.W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015; 81:112–121. https://doi.org/10.1016/j.bone.2015.07.007
5. Воробьев К.А., Божкова С.А., Тихилов Р.М., Черный А.Ж. Современные способы обработки и стерилизации аллогенных костных тканей (обзор литературы). Травматология и ортопедия России. 2017;23(3):134–147. https://doi.org/10.21823/2311-2905-2017-23-3-134-147
6. Baldwin P., Li D.J., Auston D.A., Mir H.S., Yoon R.S., Koval K.J. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J. Orthop. Trauma. 2019;33(4):203–213. https://doi.org/10.1097/bot.0000000000001420
7. Islam A., Chapin K., Moore E., Ford J., Rimnac C., Akkus O. Gamma Radiation Sterilization Reduces the Highcycle Fatigue Life of Allograft Bone. Clin. Orthop. Relat. Res. 2016;474(3):827–835. https://doi.org/10.1007/s11999-015-4589-y
8. Zamborsky R., Svec A., Bohac M., Kilian M., Kokavec M. Infection in Bone Allograft Transplants. Exp. Clin. Transplant. 2016;14(5):484–490. https://doi.org/10.6002/ect.2016.0076
9. Reddi A.H., Iwasa K. Morphogenesis, Bone Morphogenetic Proteins, and Regeneration of Bone and Articular Cartilage. In: Principles of Regenerative Medicine (Third Edition). Academic Press; 2019. Chapter 25. P. 405–416. https://doi.org/10.1016/B978-0-12-809880-6.00025-4
10. Boerckel J.D., Kolambkar Y.M., Dupont K.M., Uhrig B.A., Phelps E.A., Stevens H.Y., García A.J., Guldberg R.E. Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials. 2011;32(22):5241–5251. https://doi.org/10.1016/j.biomaterials.2011.03.063
11. Damlar I., Erdoğan Ö., Tatli U., Arpağ O.F., Görmez U., Üstün Y. Comparison of osteoconductive properties of three different β-tricalcium phosphate graft materials: a pilot histomorphometric study in a pig model. J. Craniomaxillofac. Surg. 2015;43(1):175–180. https://doi.org/10.1016/j.jcms.2014.11.006
12. Tite T., Popa A.C., Balescu L.M., Bogdan I.M., Pasuk I., Ferreira J., Stan G.E. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials. 2018;11(11):2081. https://doi.org/10.3390/ma11112081
13. Basirun W.J., Nasiri-Tabrizi B., Baradaran S. Overview of Hydroxyapatite–Graphene Nanoplatelets Composite as Bone Graft Substitute: Mechanical Behavior and In-vitro Biofunctionality. Critical reviews in solid state and material sciences. 2018;43(3):177–212. https://doi.org/10.1080/10408436.2017.1333951
14. Sheikh Z., Abdallah M.N., Hanafi A.A., Misbahuddin S., Rashid H., Glogauer M. Mechanisms of in Vivo Degradation and Resorption of Calcium Phosphate Based Biomaterials. Materials. 2015;8(11):7913–7925. https://doi.org/10.3390/ma8115430
15. Raynaud S., Champion E., Bernache-Assollant D., Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials. 2002;23(4):1065–1072. https://doi.org/10.1016/s0142-9612(01)00218-6
16. Bose S., Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 2012;8(4):1401-1421. https://doi.org/10.1016/j.actbio.2011.11.017
17. Parsamehr P.S., Zahed M., Tofighy M.A., Mohammadi T., Rezakazemi M. Preparation of novel cross-linked graphene oxide membrane for desalination applications using (EDC and NHS)-activated graphene oxide and PEI. Desalination. 2019;418(15):114079. https://doi.org/10.1016/j.desal.2019.114079
18. Poddar S., Agarwal P.S., Sahi A.K., Vajanthri K.Y., Pallawi Singh K.N., Mahto S.K. Fabrication and Cytocompatibility Evaluation of Psyllium Husk (Isabgol)/Gelatin Composite Scaffolds. Appl. Biochem. Biotechnol. 2019;188(3):750–768. https://doi.org/10.1007/s12010-019-02958-7
19. Nam K., Kimura T., Funamoto S., Kishida A. Preparation of a collagen/polymer hybrid gel designed for tissue membranes. Part I: Controlling the polymer-collagen cross-linking process using an ethanol/water co-solvent. Acta Biomater. 2010;6(2):403–408. https://doi.org/10.1016/j.actbio.2009.06.021
20. Teixeira S., Yang L., Dijkstra P.J., Ferraz M.P., Monteiro F.J. Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering. J. Mater. Sci. Mater. Med. 2010;21(8):2385–2392. https://doi.org/10.1007/s10856-010-4097-2
21. Hernigou P., Dubory A., Pariat J., Potage D., Roubineau F., Jammal S., Flouzat Lachaniette C.H. Beta-tricalcium phosphate for orthopedic reconstructions as an alternative to autogenous bone graft. Morphologie. 2017;101(334):173–179. https://doi.org/10.1016/j.morpho.2017.03.005
22. Owen G.Rh., Dard M., Larjava H. Hydoxyapatite/ beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J. Biomed. Mater. Res. B Appl. Biomater. 2018;106(6):2493–2512. https://doi.org/10.1002/jbm.b.34049
23. Zhang L., Zhang Ch., Zhang R., Jiang D., Zhu Q., Wang S. Extraction and characterization of HA/β-TCP biphasic calcium phosphate from marine fish. Mat. Letters. 2019;236(1):680–682. https://doi.org/10.1016/j.matlet.2018.11.014
24. Tanaka T., Komaki H., Chazono M., Kitasato S., Kakuta A., Akiyama S., Marumo K. Basic research and clinical application of beta-tricalcium phosphate (β-TCP). Morphologie. 2017;101(334):164–172. https://doi.org/10.1016/j.morpho.2017.03.002
25. Shishido A., Yokogawa Y. TEM Observation of Heat-Treated β-Tricalcium Phosphate Powder and its Precursor Obtained by Mechanochemical Reaction. Key Eng. Mat. 2017;758:184–188. https://doi.org/10.4028/www.scientific.net/KEM.758.184
26. Wen J., Kim I.Y., Kikuta K., Ohtsuki C. Optimization of Sintering Conditions for Improvement of Mechanical Property of a-Tricalcium Phosphate Blocks. Glob. J. Biotechnol. Biomater. Sci. 2016;1(1):010–016. https://doi.org/10.17352/gjbbs.000004
27. Zhang E., Yang L., Xu J., Chen H. Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application. Acta Biomater. 2010;6(5):1756–1762. https://doi.org/10.1016/j.actbio.2009.11.024
28. Chou J., Hao J., Kuroda S., Bishop D., Ben-Nissan B., Milthorpe B., Otsuka M. Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP) Synthesized from Porous Foraminifera Carbonate Macrospheres. Mar. Drugs. 2013;11(12):5148–5158. https://doi.org/10.3390/md11125148
29. Hirota M., Hayakawa T., Shima T., Ametani A., Tohnai I. High porous titanium scaffolds showed higher compatibility than lower porous beta-tricalcium phosphate scaffolds for regulating human osteoblast and osteoclast differentiation. Mater. Sci. Eng. C.: Mate. Biol. Appl. 2015;49:623–631. https://doi.org/10.1016/j.msec.2015.01.006
30. Kaur G., Pandey O.P., Singh K., Homa D., Scott B., Pickrell G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A. 2014;102(1):254–274. https://doi.org/10.1002/jbm.a.34690
31. Fiume E., Barberi J., Verné E., Baino F. Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies. J. Funct. Biomater. 2018;9(1):24. https://doi.org/10.3390/jfb9010024
32. Dittler M.L., Unalan I., Grünewald A., Beltrán A.M., Grillo C.A., Destch R., Gonzalez M.C., Boccaccini A.R. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Colloids. Surf. B: Biointerfaces. 2019;182:110346. https://doi.org/10.1016/j.colsurfb.2019.110346
33. Ferraris S, Yamaguchi S, Barbani N, Cazzola M., Cristallini C., Miola M., Vernè E., Spriano S. Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation. Acta Biomater. 2020;102:468–480. https://doi.org/10.1016/j.actbio.2019.11.024
34. O’Donnell M.D. Melt‐Derived Bioactive Glass. In: Bio-glasses: An introduction. New Jersey, USA: John Wiley & Sons; 2012. P. 13–28. https://doi.org/10.1002/9781118346457.ch2
35. Höland W., Beall G. H. Glass-Ceramics. In: Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties. New York, USA: Academic Press; 2013. Chapter 5.1. P. 371–381. https://doi.org/10.1016/B978-0-12-385469-8.00021-6
36. Nandi S.K., Mahato A., Kundu B., Mukherjee P. Doped Bioactive Glass Materials in Bone Regeneration. In: Advanced Techniques in Bone Regeneration. Norderstedt, Germany: BoD – Books on Demand; 2016. P. 275–328. https://doi.org/10.5772/63266
37. Zhang X., Zeng D., Li N., Wen J., Jiang X., Liu C., Li Y. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Sci Rep. 2016;6:19361. https://doi.org/10.1038/srep19361
38. El-Rashidy A.A., Roether J.A., Harhaus L., Kneser U., Boccaccini A.R. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1–28. https://doi.org/10.1016/j.actbio.2017.08.030
39. Bossard C., Granel H., Wittrant Y., Jallot É., Lao J., Vial C., Tiainen H. Polycaprolactone/bioactive glass hybrid scaffolds for bone regeneration. Biomed. Glasses. 2018;4(1):108–122. https://doi.org/10.1515/bglass-2018-0010
40. Ding Y., Souza M.T., Li W., Schubert D.W., Boccaccini A.R., Roether J.A. Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering. In: Handbook of Bioceramics and Biocomposites. Switzerland: Springer International Publishing; 2016. Р. 325–356. https://doi.org/10.1007/978-3-319-12460-5_17
41. Meretoja V.V., Tirri T., Malin M., Seppälä J.V., Närhi T.O. Ectopic bone formation in and soft-tissue response to P(CL/DLLA)/bioactive glass composite scaffolds. Clin. Oral. Implants Res. 2014;25(2):159–164. https://doi.org/10.1111/clr.12051
42. Iqbal N., Khan A.S., Asif A., Yar M., Haycock J.W., Rehman I.U. Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review. International Materials Reviews. 2018. 64(2):91–126. https://doi.org/10.1080/09506608.2018.1460943
43. Shen Y., Tu T., Yi B., Wang X., Tang H., Liu W., Zhang Y. Electrospun acid-neutralizing fibers for the amelioration of inflammatory response. Acta Biomater. 2019;97:200–215. https://doi.org/10.1016/j.actbio.2019.08.014
44. Luo H., Xiong G., Li Q., Ma C., Zhu Y., Guo R. Preparation and properties of a novel porous poly(lactic acid) composite reinforced with bacterial cellulose nanowhiskers. Fibers and Polym. 2014;15(12):2591–2596. https://doi.org/10.1007/s12221-014-2591-8
45. Gentile P., Chiono V., Carmagnola I., Hatton P. V. An Overview of Poly(lactic-co-glycolic) Acid (PLGA)Based Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2014;15(3):3640–3659. https://doi.org/10.3390/ijms15033640
46. Elmowafy E.M., Tiboni M., Soliman M.E. Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 2019;49:347–380. https://doi.org/10.1007/s40005-019-00439-x
47. Anderson J.M, Shive M.S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 2012;64:72–82. https://doi.org/10.1016/j.addr.2012.09.004
48. Yang F., Wang J., Hou J., Guo H., Liu C. Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2. Biomaterials. 2013;34(5):1514–1528. https://doi.org/10.1016/j.biomaterials.2012.10.058
49. Ni P., Ding Q., Fan M., Liao J., Qian Z., Luo J. Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials. 2014;35(1):236–248. https://doi.org/10.1016/j.biomaterials.2013.10.016
50. Dorati R., DeTrizio A., Modena T., Conti B., Benazzo F., Gastaldi G. Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals (Basel). 2017;10(4):96. https://doi.org/10.3390/ph10040096
51. Buyuksungur S., Endogan Tanir T., Buyuksungur A., Bektas E.I., Torun Kose G., Yucel D. 3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Biomater Sci. 2017;5(10):2144-2158. https://doi.org/10.1039/c7bm00514h
52. Volkmer E., Leicht U., Moritz M., Schwarz C., Wiese H., Milz S. Poloxamer-based hydrogels hardening at body core temperature as carriers for cell based therapies: in vitro and in vivo analysis. J. Mater. Sci. Mater. Med. 2013;24(9):2223-2234. https://doi.org/10.1007/s10856-013-4966-6
53. Amiryaghoubi N., Fathi M., Pesyan N.N., Samiei M., Barar J., Omidi Y. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med. Res. Rev. 2020;40(5):1833–1870. https://doi.org/10.1002/med.21672
54. Eğri S., Eczacıoğlu N. Sequential VEGF and BMP-2 releasing PLA-PEG-PLA scaffolds for bone tissue engineering: I. Design and in vitro tests. Artif. Cells. Nanomed. Biotechnol. 2017;45(2):321–329. https://doi.org/10.3109/21691401.2016.1147454
55. Schliephake H., Weich H., Dullin C., Gruber R., Frahse S. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid—An experimental study in rats. Biomaterials. 2008;29(1):103–110. https://doi.org/10.1016/j.biomaterials.2007.09.019
56. Facca S., Ferrand A., Mendoza-Palomares C., PerrinSchmitt F., Netter P., Mainard D. Bone Formation Induced by Growth Factors Embedded into the Nanostructured Particles. J. Biomed. Nanotechnol. 2011;7(3):482–485. https://doi.org/10.1166/jbn.2011.1311
57. Wink J.D., Gerety P.A., Sherif R.D., Lim Y., Clarke N.A., Rajapakse C.S. Sustained Delivery of rhBMP-2 by Means of Poly(Lactic-co-Glycolic Acid) Microspheres: Cranial Bone Regeneration without Heterotopic Ossification or Craniosynostosis. Plast. Reconstr. Surg. 2014;134(1):51–59. https://doi.org/10.1097/prs.0000000000000287
58. Machatschek R., Schulz B., Lendlein A. The influence of pH on the molecular degradation mechanism of PLGA. MRS Advances. 2018;3(63):3883–3889. https://doi.org/10.1557/adv.2018.602
59. Liu Y., Ghassemi A.H., Hennink W.E., Schwendeman S.P. The microclimate pH in poly(D,Llactide-co-hydroxymethyl glycolide) microspheres during biodegradation. Biomaterials. 2012;33(30):7584–7593. https://doi.org/10.1016/j.biomaterials.2012.06.013
60. Hines D.J., Kaplan D.L. Poly(lactic-co-glycolic) AcidControlled-Release Systems: Experimental and Modeling Insights. Crit. Rev. Ther. Drug Carrier. Syst. 2013;30(3):257–276. https://doi.org/10.1615/critrevtherdrugcarriersyst.2013006475
61. Kutikov A.B., Song J. Biodegradable PEG-Based Amphiphilic Block Copolymers for Tissue Engineering Applications. ACS Biomater. Sci. Eng. 2015;1(7):463–480. https://doi.org/10.1021/acsbiomaterials.5b00122
62. Pan H., Zheng Q., Guo X., Wu Y., Wu B. Polydopamineassisted BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo. Colloids Surf. B Biointerfaces. 2016;142:1–9. https://doi.org/10.1016/j.colsurfb.2016.01.060
63. Majchrowicz A., Roguska A., Krawczyńska A., Lewandowska M., Martí-Muñoz J., Engel E. In vitro evaluation of degradable electrospun polylactic acid/bioactive calcium phosphate ormoglass scaffolds. Archiv. Civ. Mech. Eng. 2020;20:1–11. https://doi.org/10.1007/s43452-020-00052-y
64. Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012;40(5):363–408. https://doi.org/10.1615/critrevbiomedeng.v40.i5.10
65. Park S.H., Park S.A., Kang Y.G., Shin J.W., Park Y.S., Gu S.R. PCL/β-TCP Composite Scaffolds Exhibit Positive Osteogenic Differentiation with Mechanical Stimulation. Tissue Eng. Regen Med. 2017;14(4):349–358. https://doi.org/10.1007/s13770-017-0022-9
66. Shin D.Y., Kang M.H., Kang I.G., Kim H.E., Jeong S.H. In vitro and in vivo evaluation of polylactic acidbased composite with tricalcium phosphate microsphere for enhanced biodegradability and osseointegration. J. Biomater. Appl. 2018;32(10):1360–1370. https://doi.org/10.1177/0885328218763660
67. Wang Y., Zhao Q., Han N., Bai L., Li J., Liu J., Che E., Hu L., Zhang Q., Jiang T., Wang S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015;11(2):313–327. https://doi.org/10.1016/j.nano.2014.09.014
68. Cheng H., Chawla A., Yang Y., Li Y., Zhang J., Jang H.L., Khademhosseini A. Development of nanomaterials for bonetargeted drug delivery. Drug Discov. Today. 2017;22(9):1336-1350. https://doi.org/10.1016/j.drudis.2017.04.021
69. Zhou Y., Quan G., Wu Q., Zhang X., Niu B., Wu B., Huang Y., Pan X., Wu C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B. 2017;8(2):165–177. https://doi.org/10.1016/j.apsb.2018.01.007
70. Vallet-Regí M. Ordered Mesoporous Materials in the Context of Drug Delivery Systems and Bone Tissue Engineering. Chemistry. 2006;12(23):5934–5943. https://doi.org/10.1002/chem.200600226
71. Ma M., Zheng S., Chen H., Yao M., Zhang K., Jia X., Mou J., Xu H.,Wu R., Shi J. A combined “RAFT” and “Graft From” polymerization strategy for surface modification of mesoporous silica nanoparticles: towards enhanced tumor accumulation and cancer therapy efficacy. J. Mater. Chem. B. 2014;2(35):5828–5836. https://doi.org/10.1039/C3TB21666G
72. Motealleh A., Kehr N. S. Nanocomposite Hydrogels and Their Applications in Tissue Engineering. Adv. Healthc. Mater. 2017;6(1):10.1002/adhm.201600938. https://doi.org/10.1002/adhm.201600938
73. Xin T., Mao J., Liu L., Tang J., Wu L., Yu X., Gu Y., Cui W., Chen L. Programmed Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Inorganic Ion Composite Hydrogel as Artificial Periosteum. ACS Appl. Mater. Interfaces. 2020;12(6):6840–6851. https://doi.org/10.1021/acsami.9b18496
74. Zhang D., Liu X., Wu G. Forming CNT-guided stereocomplex networks in polylactide-based nanocomposites. Compos. Sci. Technol. 2016;128:8–16. https://doi.org/10.1016/j.compscitech.2016.03.003
75. Kumar S.K., Jouault N., Benicewicz B., Neely T. Nanocomposites with Polymer Grafted Nanoparticles. Macromolecules. 2013;46(9):3199–3214. https://doi.org/10.1021/ma4001385
76. Mikael P.E., Amini A.R., Basu J., Josefina Arellano-Jimenez M., Laurencin C.T., Sanders M.M., Barry Carter C., Nukavarapu S.P. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed. Mater. 2014;9(3):035001. https://doi.org/10.1088/1748-6041/9/3/035001
77. Shrestha B., DeLuna F., Anastasio M.A., Yong Ye J., Brey E.M. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. Tissue Eng. Part B Rev. 2020;26(1):79–102. https://doi.org/10.1089/ten.TEB.2019.0296
78. Lorite G.S., Pitkänen O., Mohl M., Kordas K., Koivisto J.T., Kellomäki M., Monique Mendonça C.P., Jesus M.B. Carbon nanotube-based matrices for tissue engineering. In: Materials for Biomedical Engineering. Bioactive Materials, Properties, and Applications. Elsevier; 2019. Chapter 10. P. 323–353. https://doi.org/10.1016/B978-0-12-818431-8.00003-9
79. Zhu S., Jing W., Hu X., Huang Z., Cai Q., Ao Y., Yang X. Time-dependent effect of electrical stimulation on osteogenic differentiation of bone mesenchymal stromal cells cultured on conductive nanofibers. J. Biomed. Mater. Res. A. 2017;105(12):3369–3383. https://doi.org/10.1002/jbm.a.36181
80. Andrade V.B., Sá M.A., Mendes R.M., Martins-Júnior P.A., Silva G., Sousa B.R. Enhancement of Bone Healing by Local Administration of Carbon Nanotubes Functionalized with Sodium Hyaluronate in Rat Tibiae. Cells Tissues Organs. 2017;204(3–4):137–149. https://doi.org/10.1159/000453030
81. Sá M.A., Andrade V.B., Mendes R.M., Caliari M.V., Ladeira L.O., Silva E.E., Silva G.A., Corrêa-Júnior J.D., Ferreira A.J. Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets. Oral Dis. 2013;19(5):484–493. https://doi.org/10.1111/odi.12030
82. Wang X., Huang Z., Wei M.., Lu T., Nong D., Zhao J., Gao X., Teng L. Catalytic effect of nanosized ZnO and TiO 2 on thermal degradation of poly(lactic acid) and isoconversional kinetic analysis. Thermochimica Acta. 2019;672:14–24. https://doi.org/10.1016/j.tca.2018.12.008
83. Lebedev S.M. Manufacturing poly(lactic acid)/metal composites and their characterization. Int. J. Adv. Manuf. Technol. 2019;102:3213–3216. https://doi.org/10.1007/s00170-019-03420-y
84. Glenske K., Donkiewicz P., Köwitsch A., Milosevic-Oljaca N., Rider P., Rofall S., Franke J., Jung O., Smeets R., Schnettler R., Wenisch S., Barbeck M. Applications of Metals for Bone Regeneration. Int. J. Mol. Sci. 2018;19(3):826. https://doi.org/10.3390/ijms19030826
85. Trujillo S., Lizundia E., Vilas J.L., SalmeronSanchez M. PLLA/ZnO nanocomposites: Dynamic surfaces to harness cell differentiation. Colloids Surf. B Biointerfaces. 2016;144:152–160. https://doi.org/10.1016/j.colsurfb.2016.04.007
86. Pérez‐Álvarez L., Lizundia E., Ruiz-Rubio L., Benito V., Moreno I., Luis J., Vilas-Vilela J.S. Hydrolysis of poly(L‐lactide)/ZnO nanocomposites with antimicrobial activity. J. Appl. Polym. Sci.2019;136(28):47786. https://doi.org/10.1002/app.47786
87. Zhao Y., Liang H., Zhang S., Qu S., Jiang Y., Chen M. Effects of Magnesium Oxide (MgO) Shapes on In Vitro and In Vivo Degradation Behaviors of PLA/MgO Composites in Long Term. Polymers. 2020;12(5):E1074. https://doi.org/10.3390/polym12051074
88. Brown A., Zaky S., Ray H. J., Sfeir C. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater. 2015;11:543–553. https://doi.org/10.1016/j.actbio.2014.09.008
89. Urdzíková L., Jendelová P., Glogarová K., Burian M., Hájek M., Syková E. Transplantation of Bone Marrow Stem Cells as well as Mobilization by Granulocyte-Colony Stimulating Factor Promotes Recovery after Spinal Cord Injury in Rats. J. Neurotrauma. 2016;24(9):1379–1391. https://doi.org/10.1089/neu.2006.23.1379
90. Li Y., Ye D., Li M., Ma M., Gu N. Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration. ChemPhysChem. 2018;19(16):1965–1979. https://doi.org/10.1002/cphc.201701294
91. Sharifi S., Seyednejad H., Laurent S., Atyabi F., Saei A.A., Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol. Imaging. 2015;10(5):329–355. https://doi.org/10.1002/cmmi.1638
92. Kremen T. J., Bez M., Sheyn D., Ben-David S., Da X., Tawackoli W., Wagner S., Gazit D., Pelled G. In Vivo Imaging of Exogenous Progenitor Cells in Tendon Regeneration via Superparamagnetic Iron Oxide Particles. Am. J. Sports Med. 2019;47(11):2737–2744. https://doi.org/10.1177%2F0363546519861080
93. Meng J., Xiao B., Zhang Y., Liu J., Xue H., Lei J., Kong H., Huang Y., Jin Z., Gu N., Xu H. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci. Rep. 2013;3:2655. https://doi.org/10.1038/srep02655
94. Ghassemi T., Shahroodi A., Ebrahimzadeh M.H., Mousavian A., Movaffagh J., Moradi A. Current Concepts in Scaffolding for Bone Tissue Engineering. Arch. Bone Jt. Surg. 2018;6(2):90–99. https://dx.doi.org/10.22038/abjs.2018.26340.1713
95. Akilbekova D., Shaimerdenova M., Adilov S., Berillo D. Biocompatible scaffolds based on natural polymers for regenerative medicine. Int. J. Biol. Macromol. 2018;114:324–333. https://doi.org/10.1016/j.ijbiomac.2018.03.116
96. Sofi H.S., Ashraf R., Beigh M.A., Sheikh F.A. Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration. Adv. Exp. Med. Biol. 2018;1078:49–78. https://doi.org/10.1007/978-981-13-0950-2_4
97. Islam S., Rahman Bhuiyan M.A., Islam M.N. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. J. Polym. Environ. 2017;25:854–866. https://doi.org/10.1007/s10924-016-0865-5
98. Ahsan S.M., Thomas M., Reddy K.K., Sooraparaju S.G., Asthana A., Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Biol. Macromol. 2018;110:97–109. https://doi.org/10.1016/j.ijbiomac.2017.08.140
99. Lei B., Guo B., Rambhia K.J., Ma P.X. Hybrid polymer biomaterials for bone tissue regeneration. Front. Med. 2019;13(2):189–201. https://doi.org/10.1007/s11684-018-0664-6
100. Shen R., Xu W., Xue Y., Chen L., Ye H., Zhong E., Ye Z., Gao J., Yan Y. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering. Artif. Cells Nanomed. Biotechnol. 2018;46(sup2):419–430. https://doi.org/10.1080/21691401.2018.1458233
101. Yun Y.P., Lee S.Y., Kim H.J., Song J.J., Kim S.E. Improvement of osteoblast functions by sustained release of bone morphogenetic protein-2 (BMP-2) from heparin-coated chitosan scaffold. Tissue Eng. Regen. Med. 2013;10:183–191. https://doi.org/10.1007/s13770-013-0389-1
102. Russo E., Gaglianone N., Baldassari S., Parodi B., Cafaggi S., Zibana C., Donalisio M., Cagno V., Lembo D., Caviglioli G. Preparation, characterization and in vitro antiviral activity evaluation of foscarnet-chitosan nanoparticles. Colloids Surf. B: Biointerfaces. 2014;118:117–125. https://doi.org/10.1016/j.colsurfb.2014.03.037
103. Cao L., Werkmeister J.A., Wang J., Glattauer V., McLean K.M., Liu C. Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials. 2014;35(9):2730–2742. https://doi.org/10.1016/j.biomaterials.2013.12.028
104. Cao L., Wang J., Hou J., Xing W., Liu C. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials. 2014;35(2):684–698. https://doi.org/10.1016/j.biomaterials.2013.10.005
105. Echave M.C., Saenz del Burgo L., Pedraz J.L., Orive G. Gelatin as Biomaterial for Tissue Engineering. Curr. Pharm. Des. 2017;23(24):3567–3584. https://doi.org/10.2174/0929867324666170511123101
106. Poursamar S.A., Hatami J., Lehner A.N., da Silva C.L., Ferreira F.C., Antunes A.P. Gelatin porous scaffolds fabricated using a modified gas foaming technique: Characterisation and cytotoxicity assessment. Mater. Sci. Eng. C Mater. Biol. Appl. 2015;48:63–70. https://doi.org/10.1016/j.msec.2014.10.074
107. Peng Y.Y., Glattauer V., Ramshaw J.A. Stabilisation of Collagen Sponges by Glutaraldehyde Vapour Crosslinking. Int. J. Biomater. 2017;2017:8947823. https://doi.org/10.1155/2017/8947823
108. Yokota K., Matsuno T., Tabata Y., Mataga I. Evaluation of a Porous Hydroxyapatite Granule and Gelatin Hydrogel Microsphere Composite in Bone Regeneration. J. Hard Tissue Biol. 2017;26(2):203–214. https://doi.org/10.2485/jhtb.26.203
109. Elvin C.M., Brownlee A.G., Huson M.G., Tebb T.A., Kim M., Lyons R.E., Vuocolo T., Liyou N.E., Hughes T.C., Ramshaw J.A., Werkmeister J.A. The development of photochemically crosslinked native fibrinogen as a rapidly formed and mechanically strong surgical tissue sealant. Biomaterials. 2009;30(11):2059–2065 https://doi.org/10.1016/j.biomaterials.2008.12.059
110. Monteiro N., Thrivikraman G., Athirasala A., Tahayeri A., França C.M., Ferracane J.L., Bertassoni L.E. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Dent. Mater. 2018;34(3):389–399. https://doi.org/10.1016/j.dental.2017.11.020
111. Lin C.H., Su J.J., Lee S.Y., Lin Y.M. Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells. J. Tissue Eng. Regen. Med. 2018;12(10):2099–2111. https://doi.org/10.1002/term.2745
112. Kilic Bektas C., Hasirci V. Mimicking corneal stroma using keratocyte-loaded photopolymerizable methacrylated gelatin hydrogels. J. Tissue Eng. Regen. Med. 2018;12(4):e1899–e1910. https://doi.org/10.1002/term.2621
113. Gan Y., Li P., Wang L., Mo X., Song L., Xu Y., Zhao C., Ouyang B., Tu B., Luo L., Zhu L., Dong S., Li F., Zhou Q. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration. Biomaterials. 2017;136:12–28. https://doi.org/10.1016/j.biomaterials.2017.05.017
114. Dong C., Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers. 2016;8(2):42. https://doi.org/10.3390/polym8020042
115. Zhang D., Wu X., Chen J., Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact. Mater. 2017;3(1):129–138. https://doi.org/10.1016/j.bioactmat.2017.08.004
116. Gu L., Shan T., Ma Y.X., Tay F.R., Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol. 2019;37(5):464–491. https://doi.org/10.1016/j.tibtech.2018.10.007
117. Badieyan Z.S., Berezhanskyy T., Utzinger M., Aneja M.K., Emrich D., Erben R., Schüler C., Altpeter P., Ferizi M., Hasenpusch G., Rudolph C., Plank C. Transcript-activated collagen matrix as sustained mRNA delivery system for bone regeneration. J. Control Release. 2016;239:137–148. https://doi.org/10.1016/j.jconrel.2016.08.037
118. Hettiaratchi M.H., Krishnan L., Rouse T., Chou C., McDevitt T.C., Guldberg R.E. Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration. Sci. Adv. 2020;6(1):eaay1240. https://doi.org/10.1126/sciadv.aay1240
119. Peckman S., Zanella J.M., McKay W.F. Infuse® Bone Graft. In: Drug-Device Combinatins for Chronic Diseases. New Jersey, USA: John Wiley & Sons; 2015;241–260. https://doi.org/10.1002/9781119002956.ch09
120. Scalzone A., Flores-Mir C., Carozza D., d’Apuzzo F., Grassia V., Perillo L. Secondary alveolar bone grafting using autologous versus alloplastic material in the treatment of cleft lip and palate patients: systematic review and metaanalysis. Prog. Orthod. 2019;20(1):6. https://doi.org/10.1186/s40510-018-0252-y
121. Bowler D., Dym H. Bone Morphogenic Protein: Application in Implant Dentistry. Dent. Clin. North. Am. 2015;59(2):493–503. https://doi.org/10.1016/j.cden.2014.10.006
122. Geiger M., Li R.H., Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv. Drug Deliv. Rev. 2003;55(12):1613-1629. https://doi.org/10.1016/j.addr.2003.08.010
123. Oryan A., Kamali A., Moshiri A., Baharvand H., Daemi H. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int. J. Biol. Macromol. 2018;107(Pt A):678–688. https://doi.org/10.1016/j.ijbiomac.2017.08.184
124. Dai M., Liu X., Wang N., Sun J. Squid type II collagen as a novel biomaterial: Isolation, characterization, immunogenicity and relieving effect on degenerative osteoarthritis via inhibiting STAT1 signaling in proinflammatory macrophages. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;89:283–294. https://doi.org/10.1016/j.msec.2018.04.021
125. Monaco G., Cholas R., Salvatore L., Madaghiele M., Sannino A. Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;71:335–344. https://doi.org/10.1016/j.msec.2016.10.030
126. Delgado L.M., Fuller K., Zeugolis D.I. Influence of Cross-Linking Method and Disinfection/Sterilization Treatment on the Structural, Biophysical, Biochemical, and Biological Properties of Collagen-Based Devices. ACS Biomater. Sci. Eng. 2018;4(8):2739–2747. https://doi.org/10.1021/acsbiomaterials.8b00052
127. Dai Z., Ronholm J.,TianY., Sethi B., Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J. Tissue Eng. 2016;7:2041731416648810. https://doi.org/10.1177/2041731416648810
128. Nune K.C., Misra R., Bai Y., Li S., Yang R. Interplay of topographical and biochemical cues in regulating osteoblast cellular activity in BMP-2 eluting three-dimensional cellular titanium alloy mesh structures. J. Biomed. Mater. Res. A. 2019;107(1):49–60. https://doi.org/10.1002/jbm.a.36520
129. Cha J.K., Song Y.W., Kim S., Thoma D.S., Jung U.W., Jung R.E. Core Ossification of Bone Morphogenetic Protein-2-Loaded Collagenated Bone Mineral in the Sinus. Tissue Eng. Part A. 2020;10.1089/ten.TEA.2020.0151. https://doi.org/10.1089/ten.tea.2020.0151
Дополнительные файлы
|
1. Рис. 1. Недифференцированные стволовые клетки высеивают на полимерный каркас вместе с дифференцирующими агентами и ростовыми факторами, затем имплантируют in vivo. | |
Тема | ||
Тип | Исследовательские инструменты | |
Посмотреть
(304KB)
|
Метаданные ▾ |
|
2. This is to certify that the paper titled New-generation osteoplastic materials based on biological and synthetic matrices commissioned to us by Dmitry D. Lykoshin, Vladimir V. Zaitsev, Maria A. Kostromina, Roman S. Esipov has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc. | |
Тема | CERTIFICATE OF EDITING | |
Тип | Прочее | |
Посмотреть
(735KB)
|
Метаданные ▾ |
- На сегодняшний день, полимерные и биокомпозитные матриксы представляются наиболее перспективными материалами в сравнении с ксеногенным матриксом.
- Особое внимание уделяется возможности фиксации остеогенных факторов и целевых фармацевтических субстанций на материале-носителе с целью контроля дозировки и кинетики доставки.
- Полимерные и биокомпозитные материалы способны замедлять время высвобождения фармсубстанций в месте имплантации, способствуя снижению токсического и пролонгации терапевтического эффекта и являясь перспективной альтернативой аутогенной кости.
- Использование композитных носителей различного состава in vivo демонстрирует высокие показатели остеогенеза, способствует запуску биоминерализации и позволяет варьировать скорость деградации материала.
Рецензия
Для цитирования:
Лыкошин Д.Д., Зайцев В.В., Костромина М.А., Есипов Р.С. Остеопластические материалы нового поколения на основе биологических и синтетических матриксов. Тонкие химические технологии. 2021;16(1):36-54. https://doi.org/10.32362/2410-6593-2021-16-1-36-54
For citation:
Lykoshin D.D., Zaitsev V.V., Kostromina M.A., Esipov R.S. New-generation osteoplastic materials based on biological and synthetic matrices. Fine Chemical Technologies. 2021;16(1):36-54. https://doi.org/10.32362/2410-6593-2021-16-1-36-54