Preview

Fine Chemical Technologies

Advanced search

New-generation osteoplastic materials based on biological and synthetic matrices

https://doi.org/10.32362/2410-6593-2021-16-1-36-54

Full Text:

Abstract

Objectives. The purpose of this analytical review is to evaluate the market for osteoplastic materials and surgical implants, as well as study the features of new-generation materials and the results of clinical applications.

Methods. This review summarizes the volumes of research articles presented in the electronic database PubMed and eLIBRARY. A total of 129 scientific articles related to biological systems, calcium phosphate, polymer, and biocomposite matrices as carriers of pharmaceutical substances, primary recombinant protein osteoinductors, antibiotics, and biologically active chemical reagents were analyzed and summarized. The search depth was 10 years.

Results. Demineralized bone matrix constitutes 26% of all types of osteoplastic matrices used globally in surgical osteology, which includes neurosurgery, traumatology and orthopedics, dentistry, and maxillofacial and pediatric surgery. Among the matrices, polymer and biocomposite matrices are outstanding. Special attention is paid to the possibility of immobilizing osteogenic factors and target pharmaceutical substances on the scaffold material to achieve controlled and prolonged release at the site of surgical implantation. Polymeric and biocomposite materials can retard the release of pharmaceutical substances at the implantation site, promoting a decrease in the toxicity and an improvement in the therapeutic effect. The use of composite scaffolds of different compositions in vivo results in high osteogenesis, promotes the initialization of biomineralization, and enables the tuning of the degradation rate of the material.

Conclusions. Osteoplastic materials of various compositions in combination with drugs showed accelerated regeneration and mineralization of bone tissue in vivo, excluding systemic side reactions. Furthermore, although some materials have already been registered as commercial drugs, a plethora of unresolved problems remain. Due to the limited clinical studies of materials for use on humans, there is still an insufficient understanding of the toxicity of materials, time of their resorption, speed of drug delivery, and the possible long-term adverse effects of using implants of different compositions.

About the Authors

D. D. Lykoshin
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation

Dmitry D. Lykoshin, Engineer, Laboratory of Biopharmaceutical Technologies. Scopus Author ID 57219992166, ResearcherID AAB-1166-2021

16/10, Miklukho-Maklaya ul., Moscow, 117997



V. V. Zaitsev
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Ministry of Health of the Russian Federation
Russian Federation

Vladimir V. Zaitsev, Cand. Sci. (Med.), Leading Researcher, Team Leader of osteoplastic materials. Scopus Author ID 56648236900, ResearcherID AAI-4110-2020

10, Priorova ul., Moscow, 127299



M. A. Kostromina
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation

Maria A. Kostromina, Junior Researcher, Laboratory of Biopharmaceutical Technologies. Scopus Author ID 55123242300 ResearcherID R-9418-2016

16/10, Miklukho-Maklaya ul., Moscow, 117997



R. S. Esipov
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation

Roman S. Esipov, Dr. Sci. (Chem.), Senior Reseacher, Laboratory of Biopharmaceutical Technologies. Scopus Author ID 6701850033, Researcher ID G-4950-2017

16/10, Miklukho-Maklaya ul., Moscow, 117997



References

1. Henkel J., Woodruff M.A., Epari D.R., Steck R., Glatt V., Dickinson I.C., Choong P.F., Schuetz M.A., Hutmacher D.W. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective Bone Res. 2013;1(3):216–248. https://doi.org/10.4248/BR201303002

2. Barabaschi G.D., Manoharan V., Li Q., Bertassoni L.E. Engineering Pre-vascularized Scaffolds for Bone Regeneration. Adv. Exp. Med. Biol. 2015;881:79–94. https://doi.org/10.1007/978-3-319-22345-2_5

3. O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mat. Today. 2011;14(3):88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

4. García-Gareta E., Coathup M.J., Blunn G.W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015; 81:112–121. https://doi.org/10.1016/j.bone.2015.07.007

5. Vorobyоv K.A., Bozhkova S.A., Tikhilov R.M., Cherny A.Zh. Current methods of processing and sterilization of bone allografts (review of literature). Travmatologiya i ortopediya Rossii = Traumatology and Orthopedics of Russia. 2017;23(3):134–147 (in Russ.). https://doi.org/10.21823/2311-2905-2017-23-3-134-147

6. Baldwin P., Li D.J., Auston D.A., Mir H.S., Yoon R.S., Koval K.J. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J. Orthop. Trauma. 2019;33(4):203–213. https://doi.org/10.1097/bot.0000000000001420

7. Islam A., Chapin K., Moore E., Ford J., Rimnac C., Akkus O. Gamma Radiation Sterilization Reduces the Highcycle Fatigue Life of Allograft Bone. Clin. Orthop. Relat. Res. 2016;474(3):827–835. https://doi.org/10.1007/s11999-015-4589-y

8. Zamborsky R., Svec A., Bohac M., Kilian M., Kokavec M. Infection in Bone Allograft Transplants. Exp. Clin. Transplant. 2016;14(5):484–490. https://doi.org/10.6002/ect.2016.0076

9. Reddi A.H., Iwasa K. Morphogenesis, Bone Morphogenetic Proteins, and Regeneration of Bone and Articular Cartilage. In: Principles of Regenerative Medicine (Third Edition). Academic Press; 2019. Chapter 25. P. 405–416. https://doi.org/10.1016/B978-0-12-809880-6.00025-4

10. Boerckel J.D., Kolambkar Y.M., Dupont K.M., Uhrig B.A., Phelps E.A., Stevens H.Y., García A.J., Guldberg R.E. Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials. 2011;32(22):5241–5251. https://doi.org/10.1016/j.biomaterials.2011.03.063

11. Damlar I., Erdoğan Ö., Tatli U., Arpağ O.F., Görmez U., Üstün Y. Comparison of osteoconductive properties of three different β-tricalcium phosphate graft materials: a pilot histomorphometric study in a pig model. J. Craniomaxillofac. Surg. 2015;43(1):175–180. https://doi.org/10.1016/j.jcms.2014.11.006

12. Tite T., Popa A.C., Balescu L.M., Bogdan I.M., Pasuk I., Ferreira J., Stan G.E. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials. 2018;11(11):2081. https://doi.org/10.3390/ma11112081

13. Basirun W.J., Nasiri-Tabrizi B., Baradaran S. Overview of Hydroxyapatite–Graphene Nanoplatelets Composite as Bone Graft Substitute: Mechanical Behavior and In-vitro Biofunctionality. Critical reviews in solid state and material sciences. 2018;43(3):177–212. https://doi.org/10.1080/10408436.2017.1333951

14. Sheikh Z., Abdallah M.N., Hanafi A.A., Misbahuddin S., Rashid H., Glogauer M. Mechanisms of in Vivo Degradation and Resorption of Calcium Phosphate Based Biomaterials. Materials. 2015;8(11):7913–7925. https://doi.org/10.3390/ma8115430

15. Raynaud S., Champion E., Bernache-Assollant D., Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials. 2002;23(4):1065–1072. https://doi.org/10.1016/s0142-9612(01)00218-6

16. Bose S., Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 2012;8(4):1401-1421. https://doi.org/10.1016/j.actbio.2011.11.017

17. Parsamehr P.S., Zahed M., Tofighy M.A., Mohammadi T., Rezakazemi M. Preparation of novel cross-linked graphene oxide membrane for desalination applications using (EDC and NHS)-activated graphene oxide and PEI. Desalination. 2019;418(15):114079. https://doi.org/10.1016/j.desal.2019.114079

18. Poddar S., Agarwal P.S., Sahi A.K., Vajanthri K.Y., Pallawi Singh K.N., Mahto S.K. Fabrication and Cytocompatibility Evaluation of Psyllium Husk (Isabgol)/Gelatin Composite Scaffolds. Appl. Biochem. Biotechnol. 2019;188(3):750–768. https://doi.org/10.1007/s12010-019-02958-7

19. Nam K., Kimura T., Funamoto S., Kishida A. Preparation of a collagen/polymer hybrid gel designed for tissue membranes. Part I: Controlling the polymer-collagen cross-linking process using an ethanol/water co-solvent. Acta Biomater. 2010;6(2):403–408. https://doi.org/10.1016/j.actbio.2009.06.021

20. Teixeira S., Yang L., Dijkstra P.J., Ferraz M.P., Monteiro F.J. Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering. J. Mater. Sci. Mater. Med. 2010;21(8):2385–2392. https://doi.org/10.1007/s10856-010-4097-2

21. Hernigou P., Dubory A., Pariat J., Potage D., Roubineau F., Jammal S., Flouzat Lachaniette C.H. Beta-tricalcium phosphate for orthopedic reconstructions as an alternative to autogenous bone graft. Morphologie. 2017;101(334):173–179. https://doi.org/10.1016/j.morpho.2017.03.005

22. Owen G.Rh., Dard M., Larjava H. Hydoxyapatite/ beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J. Biomed. Mater. Res. B Appl. Biomater. 2018;106(6):2493–2512. https://doi.org/10.1002/jbm.b.34049

23. Zhang L., Zhang Ch., Zhang R., Jiang D., Zhu Q., Wang S. Extraction and characterization of HA/β-TCP biphasic calcium phosphate from marine fish. Mat. Letters. 2019;236(1):680–682. https://doi.org/10.1016/j.matlet.2018.11.014

24. Tanaka T., Komaki H., Chazono M., Kitasato S., Kakuta A., Akiyama S., Marumo K. Basic research and clinical application of beta-tricalcium phosphate (β-TCP). Morphologie. 2017;101(334):164–172. https://doi.org/10.1016/j.morpho.2017.03.002

25. Shishido A., Yokogawa Y. TEM Observation of Heat-Treated β-Tricalcium Phosphate Powder and its Precursor Obtained by Mechanochemical Reaction. Key Eng. Mat. 2017;758:184–188. https://doi.org/10.4028/www.scientific.net/KEM.758.184

26. Wen J., Kim I.Y., Kikuta K., Ohtsuki C. Optimization of Sintering Conditions for Improvement of Mechanical Property of a-Tricalcium Phosphate Blocks. Glob. J. Biotechnol. Biomater. Sci. 2016;1(1):010–016. https://doi.org/10.17352/gjbbs.000004

27. Zhang E., Yang L., Xu J., Chen H. Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application. Acta Biomater. 2010;6(5):1756–1762. https://doi.org/10.1016/j.actbio.2009.11.024

28. Chou J., Hao J., Kuroda S., Bishop D., Ben-Nissan B., Milthorpe B., Otsuka M. Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP) Synthesized from Porous Foraminifera Carbonate Macrospheres. Mar. Drugs. 2013;11(12):5148–5158. https://doi.org/10.3390/md11125148

29. Hirota M., Hayakawa T., Shima T., Ametani A., Tohnai I. High porous titanium scaffolds showed higher compatibility than lower porous beta-tricalcium phosphate scaffolds for regulating human osteoblast and osteoclast differentiation. Mater. Sci. Eng. C.: Mate. Biol. Appl. 2015;49:623–631. https://doi.org/10.1016/j.msec.2015.01.006

30. Kaur G., Pandey O.P., Singh K., Homa D., Scott B., Pickrell G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A. 2014;102(1):254–274. https://doi.org/10.1002/jbm.a.34690

31. Fiume E., Barberi J., Verné E., Baino F. Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies. J. Funct. Biomater. 2018;9(1):24. https://doi.org/10.3390/jfb9010024

32. Dittler M.L., Unalan I., Grünewald A., Beltrán A.M., Grillo C.A., Destch R., Gonzalez M.C., Boccaccini A.R. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Colloids. Surf. B: Biointerfaces. 2019;182:110346. https://doi.org/10.1016/j.colsurfb.2019.110346

33. Ferraris S, Yamaguchi S, Barbani N, Cazzola M., Cristallini C., Miola M., Vernè E., Spriano S. Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation. Acta Biomater. 2020;102:468–480. https://doi.org/10.1016/j.actbio.2019.11.024

34. O’Donnell M.D. Melt‐Derived Bioactive Glass. In: Bio-glasses: An introduction. New Jersey, USA: John Wiley & Sons; 2012. P. 13–28. https://doi.org/10.1002/9781118346457.ch2

35. Höland W., Beall G. H. Glass-Ceramics. In: Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties. New York, USA: Academic Press; 2013. Chapter 5.1. P. 371–381. https://doi.org/10.1016/B978-0-12-385469-8.00021-6

36. Nandi S.K., Mahato A., Kundu B., Mukherjee P. Doped Bioactive Glass Materials in Bone Regeneration. In: Advanced Techniques in Bone Regeneration. Norderstedt, Germany: BoD – Books on Demand; 2016. P. 275–328. https://doi.org/10.5772/63266

37. Zhang X., Zeng D., Li N., Wen J., Jiang X., Liu C., Li Y. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Sci Rep. 2016;6:19361. https://doi.org/10.1038/srep19361

38. El-Rashidy A.A., Roether J.A., Harhaus L., Kneser U., Boccaccini A.R. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1–28. https://doi.org/10.1016/j.actbio.2017.08.030

39. Bossard C., Granel H., Wittrant Y., Jallot É., Lao J., Vial C., Tiainen H. Polycaprolactone/bioactive glass hybrid scaffolds for bone regeneration. Biomed. Glasses. 2018;4(1):108–122. https://doi.org/10.1515/bglass-2018-0010

40. Ding Y., Souza M.T., Li W., Schubert D.W., Boccaccini A.R., Roether J.A. Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering. In: Handbook of Bioceramics and Biocomposites. Switzerland: Springer International Publishing; 2016. Р. 325–356. https://doi.org/10.1007/978-3-319-12460-5_17

41. Meretoja V.V., Tirri T., Malin M., Seppälä J.V., Närhi T.O. Ectopic bone formation in and soft-tissue response to P(CL/DLLA)/bioactive glass composite scaffolds. Clin. Oral. Implants Res. 2014;25(2):159–164. https://doi.org/10.1111/clr.12051

42. Iqbal N., Khan A.S., Asif A., Yar M., Haycock J.W., Rehman I.U. Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review. International Materials Reviews. 2018. 64(2):91–126. https://doi.org/10.1080/09506608.2018.1460943

43. Shen Y., Tu T., Yi B., Wang X., Tang H., Liu W., Zhang Y. Electrospun acid-neutralizing fibers for the amelioration of inflammatory response. Acta Biomater. 2019;97:200–215. https://doi.org/10.1016/j.actbio.2019.08.014

44. Luo H., Xiong G., Li Q., Ma C., Zhu Y., Guo R. Preparation and properties of a novel porous poly(lactic acid) composite reinforced with bacterial cellulose nanowhiskers. Fibers and Polym. 2014;15(12):2591–2596. https://doi.org/10.1007/s12221-014-2591-8

45. Gentile P., Chiono V., Carmagnola I., Hatton P. V. An Overview of Poly(lactic-co-glycolic) Acid (PLGA)Based Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2014;15(3):3640–3659. https://doi.org/10.3390/ijms15033640

46. Elmowafy E.M., Tiboni M., Soliman M.E. Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 2019;49:347–380. https://doi.org/10.1007/s40005-019-00439-x

47. Anderson J.M, Shive M.S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 2012;64:72–82. https://doi.org/10.1016/j.addr.2012.09.004

48. Yang F., Wang J., Hou J., Guo H., Liu C. Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2. Biomaterials. 2013;34(5):1514–1528. https://doi.org/10.1016/j.biomaterials.2012.10.058

49. Ni P., Ding Q., Fan M., Liao J., Qian Z., Luo J. Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials. 2014;35(1):236–248. https://doi.org/10.1016/j.biomaterials.2013.10.016

50. Dorati R., DeTrizio A., Modena T., Conti B., Benazzo F., Gastaldi G. Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals (Basel). 2017;10(4):96. https://doi.org/10.3390/ph10040096

51. Buyuksungur S., Endogan Tanir T., Buyuksungur A., Bektas E.I., Torun Kose G., Yucel D. 3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Biomater Sci. 2017;5(10):2144-2158. https://doi.org/10.1039/c7bm00514h

52. Volkmer E., Leicht U., Moritz M., Schwarz C., Wiese H., Milz S. Poloxamer-based hydrogels hardening at body core temperature as carriers for cell based therapies: in vitro and in vivo analysis. J. Mater. Sci. Mater. Med. 2013;24(9):2223-2234. https://doi.org/10.1007/s10856-013-4966-6

53. Amiryaghoubi N., Fathi M., Pesyan N.N., Samiei M., Barar J., Omidi Y. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med. Res. Rev. 2020;40(5):1833–1870. https://doi.org/10.1002/med.21672

54. Eğri S., Eczacıoğlu N. Sequential VEGF and BMP-2 releasing PLA-PEG-PLA scaffolds for bone tissue engineering: I. Design and in vitro tests. Artif. Cells. Nanomed. Biotechnol. 2017;45(2):321–329. https://doi.org/10.3109/21691401.2016.1147454

55. Schliephake H., Weich H., Dullin C., Gruber R., Frahse S. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid—An experimental study in rats. Biomaterials. 2008;29(1):103–110. https://doi.org/10.1016/j.biomaterials.2007.09.019

56. Facca S., Ferrand A., Mendoza-Palomares C., PerrinSchmitt F., Netter P., Mainard D. Bone Formation Induced by Growth Factors Embedded into the Nanostructured Particles. J. Biomed. Nanotechnol. 2011;7(3):482–485. https://doi.org/10.1166/jbn.2011.1311

57. Wink J.D., Gerety P.A., Sherif R.D., Lim Y., Clarke N.A., Rajapakse C.S. Sustained Delivery of rhBMP-2 by Means of Poly(Lactic-co-Glycolic Acid) Microspheres: Cranial Bone Regeneration without Heterotopic Ossification or Craniosynostosis. Plast. Reconstr. Surg. 2014;134(1):51–59. https://doi.org/10.1097/prs.0000000000000287

58. Machatschek R., Schulz B., Lendlein A. The influence of pH on the molecular degradation mechanism of PLGA. MRS Advances. 2018;3(63):3883–3889. https://doi.org/10.1557/adv.2018.602

59. Liu Y., Ghassemi A.H., Hennink W.E., Schwendeman S.P. The microclimate pH in poly(D,Llactide-co-hydroxymethyl glycolide) microspheres during biodegradation. Biomaterials. 2012;33(30):7584–7593. https://doi.org/10.1016/j.biomaterials.2012.06.013

60. Hines D.J., Kaplan D.L. Poly(lactic-co-glycolic) AcidControlled-Release Systems: Experimental and Modeling Insights. Crit. Rev. Ther. Drug Carrier. Syst. 2013;30(3):257–276. https://doi.org/10.1615/critrevtherdrugcarriersyst.2013006475

61. Kutikov A.B., Song J. Biodegradable PEG-Based Amphiphilic Block Copolymers for Tissue Engineering Applications. ACS Biomater. Sci. Eng. 2015;1(7):463–480. https://doi.org/10.1021/acsbiomaterials.5b00122

62. Pan H., Zheng Q., Guo X., Wu Y., Wu B. Polydopamineassisted BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo. Colloids Surf. B Biointerfaces. 2016;142:1–9. https://doi.org/10.1016/j.colsurfb.2016.01.060

63. Majchrowicz A., Roguska A., Krawczyńska A., Lewandowska M., Martí-Muñoz J., Engel E. In vitro evaluation of degradable electrospun polylactic acid/bioactive calcium phosphate ormoglass scaffolds. Archiv. Civ. Mech. Eng. 2020;20:1–11. https://doi.org/10.1007/s43452-020-00052-y

64. Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012;40(5):363–408. https://doi.org/10.1615/critrevbiomedeng.v40.i5.10

65. Park S.H., Park S.A., Kang Y.G., Shin J.W., Park Y.S., Gu S.R. PCL/β-TCP Composite Scaffolds Exhibit Positive Osteogenic Differentiation with Mechanical Stimulation. Tissue Eng. Regen Med. 2017;14(4):349–358. https://doi.org/10.1007/s13770-017-0022-9

66. Shin D.Y., Kang M.H., Kang I.G., Kim H.E., Jeong S.H. In vitro and in vivo evaluation of polylactic acidbased composite with tricalcium phosphate microsphere for enhanced biodegradability and osseointegration. J. Biomater. Appl. 2018;32(10):1360–1370. https://doi.org/10.1177/0885328218763660

67. Wang Y., Zhao Q., Han N., Bai L., Li J., Liu J., Che E., Hu L., Zhang Q., Jiang T., Wang S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015;11(2):313–327. https://doi.org/10.1016/j.nano.2014.09.014

68. Cheng H., Chawla A., Yang Y., Li Y., Zhang J., Jang H.L., Khademhosseini A. Development of nanomaterials for bonetargeted drug delivery. Drug Discov. Today. 2017;22(9):1336-1350. https://doi.org/10.1016/j.drudis.2017.04.021

69. Zhou Y., Quan G., Wu Q., Zhang X., Niu B., Wu B., Huang Y., Pan X., Wu C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B. 2017;8(2):165–177. https://doi.org/10.1016/j.apsb.2018.01.007

70. Vallet-Regí M. Ordered Mesoporous Materials in the Context of Drug Delivery Systems and Bone Tissue Engineering. Chemistry. 2006;12(23):5934–5943. https://doi.org/10.1002/chem.200600226

71. Ma M., Zheng S., Chen H., Yao M., Zhang K., Jia X., Mou J., Xu H.,Wu R., Shi J. A combined “RAFT” and “Graft From” polymerization strategy for surface modification of mesoporous silica nanoparticles: towards enhanced tumor accumulation and cancer therapy efficacy. J. Mater. Chem. B. 2014;2(35):5828–5836. https://doi.org/10.1039/C3TB21666G

72. Motealleh A., Kehr N. S. Nanocomposite Hydrogels and Their Applications in Tissue Engineering. Adv. Healthc. Mater. 2017;6(1):10.1002/adhm.201600938. https://doi.org/10.1002/adhm.201600938

73. Xin T., Mao J., Liu L., Tang J., Wu L., Yu X., Gu Y., Cui W., Chen L. Programmed Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Inorganic Ion Composite Hydrogel as Artificial Periosteum. ACS Appl. Mater. Interfaces. 2020;12(6):6840–6851. https://doi.org/10.1021/acsami.9b18496

74. Zhang D., Liu X., Wu G. Forming CNT-guided stereocomplex networks in polylactide-based nanocomposites. Compos. Sci. Technol. 2016;128:8–16. https://doi.org/10.1016/j.compscitech.2016.03.003

75. Kumar S.K., Jouault N., Benicewicz B., Neely T. Nanocomposites with Polymer Grafted Nanoparticles. Macromolecules. 2013;46(9):3199–3214. https://doi.org/10.1021/ma4001385

76. Mikael P.E., Amini A.R., Basu J., Josefina Arellano-Jimenez M., Laurencin C.T., Sanders M.M., Barry Carter C., Nukavarapu S.P. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed. Mater. 2014;9(3):035001. https://doi.org/10.1088/1748-6041/9/3/035001

77. Shrestha B., DeLuna F., Anastasio M.A., Yong Ye J., Brey E.M. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. Tissue Eng. Part B Rev. 2020;26(1):79–102. https://doi.org/10.1089/ten.TEB.2019.0296

78. Lorite G.S., Pitkänen O., Mohl M., Kordas K., Koivisto J.T., Kellomäki M., Monique Mendonça C.P., Jesus M.B. Carbon nanotube-based matrices for tissue engineering. In: Materials for Biomedical Engineering. Bioactive Materials, Properties, and Applications. Elsevier; 2019. Chapter 10. P. 323–353. https://doi.org/10.1016/B978-0-12-818431-8.00003-9

79. Zhu S., Jing W., Hu X., Huang Z., Cai Q., Ao Y., Yang X. Time-dependent effect of electrical stimulation on osteogenic differentiation of bone mesenchymal stromal cells cultured on conductive nanofibers. J. Biomed. Mater. Res. A. 2017;105(12):3369–3383. https://doi.org/10.1002/jbm.a.36181

80. Andrade V.B., Sá M.A., Mendes R.M., Martins-Júnior P.A., Silva G., Sousa B.R. Enhancement of Bone Healing by Local Administration of Carbon Nanotubes Functionalized with Sodium Hyaluronate in Rat Tibiae. Cells Tissues Organs. 2017;204(3–4):137–149. https://doi.org/10.1159/000453030

81. Sá M.A., Andrade V.B., Mendes R.M., Caliari M.V., Ladeira L.O., Silva E.E., Silva G.A., Corrêa-Júnior J.D., Ferreira A.J. Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets. Oral Dis. 2013;19(5):484–493. https://doi.org/10.1111/odi.12030

82. Wang X., Huang Z., Wei M.., Lu T., Nong D., Zhao J., Gao X., Teng L. Catalytic effect of nanosized ZnO and TiO 2 on thermal degradation of poly(lactic acid) and isoconversional kinetic analysis. Thermochimica Acta. 2019;672:14–24. https://doi.org/10.1016/j.tca.2018.12.008

83. Lebedev S.M. Manufacturing poly(lactic acid)/metal composites and their characterization. Int. J. Adv. Manuf. Technol. 2019;102:3213–3216. https://doi.org/10.1007/s00170-019-03420-y

84. Glenske K., Donkiewicz P., Köwitsch A., Milosevic-Oljaca N., Rider P., Rofall S., Franke J., Jung O., Smeets R., Schnettler R., Wenisch S., Barbeck M. Applications of Metals for Bone Regeneration. Int. J. Mol. Sci. 2018;19(3):826. https://doi.org/10.3390/ijms19030826

85. Trujillo S., Lizundia E., Vilas J.L., SalmeronSanchez M. PLLA/ZnO nanocomposites: Dynamic surfaces to harness cell differentiation. Colloids Surf. B Biointerfaces. 2016;144:152–160. https://doi.org/10.1016/j.colsurfb.2016.04.007

86. Pérez‐Álvarez L., Lizundia E., Ruiz-Rubio L., Benito V., Moreno I., Luis J., Vilas-Vilela J.S. Hydrolysis of poly(L‐lactide)/ZnO nanocomposites with antimicrobial activity. J. Appl. Polym. Sci.2019;136(28):47786. https://doi.org/10.1002/app.47786

87. Zhao Y., Liang H., Zhang S., Qu S., Jiang Y., Chen M. Effects of Magnesium Oxide (MgO) Shapes on In Vitro and In Vivo Degradation Behaviors of PLA/MgO Composites in Long Term. Polymers. 2020;12(5):E1074. https://doi.org/10.3390/polym12051074

88. Brown A., Zaky S., Ray H. J., Sfeir C. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater. 2015;11:543–553. https://doi.org/10.1016/j.actbio.2014.09.008

89. Urdzíková L., Jendelová P., Glogarová K., Burian M., Hájek M., Syková E. Transplantation of Bone Marrow Stem Cells as well as Mobilization by Granulocyte-Colony Stimulating Factor Promotes Recovery after Spinal Cord Injury in Rats. J. Neurotrauma. 2016;24(9):1379–1391. https://doi.org/10.1089/neu.2006.23.1379

90. Li Y., Ye D., Li M., Ma M., Gu N. Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration. ChemPhysChem. 2018;19(16):1965–1979. https://doi.org/10.1002/cphc.201701294

91. Sharifi S., Seyednejad H., Laurent S., Atyabi F., Saei A.A., Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol. Imaging. 2015;10(5):329–355. https://doi.org/10.1002/cmmi.1638

92. Kremen T. J., Bez M., Sheyn D., Ben-David S., Da X., Tawackoli W., Wagner S., Gazit D., Pelled G. In Vivo Imaging of Exogenous Progenitor Cells in Tendon Regeneration via Superparamagnetic Iron Oxide Particles. Am. J. Sports Med. 2019;47(11):2737–2744. https://doi.org/10.1177%2F0363546519861080

93. Meng J., Xiao B., Zhang Y., Liu J., Xue H., Lei J., Kong H., Huang Y., Jin Z., Gu N., Xu H. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci. Rep. 2013;3:2655. https://doi.org/10.1038/srep02655

94. Ghassemi T., Shahroodi A., Ebrahimzadeh M.H., Mousavian A., Movaffagh J., Moradi A. Current Concepts in Scaffolding for Bone Tissue Engineering. Arch. Bone Jt. Surg. 2018;6(2):90–99. https://dx.doi.org/10.22038/abjs.2018.26340.1713

95. Akilbekova D., Shaimerdenova M., Adilov S., Berillo D. Biocompatible scaffolds based on natural polymers for regenerative medicine. Int. J. Biol. Macromol. 2018;114:324–333. https://doi.org/10.1016/j.ijbiomac.2018.03.116

96. Sofi H.S., Ashraf R., Beigh M.A., Sheikh F.A. Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration. Adv. Exp. Med. Biol. 2018;1078:49–78. https://doi.org/10.1007/978-981-13-0950-2_4

97. Islam S., Rahman Bhuiyan M.A., Islam M.N. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. J. Polym. Environ. 2017;25:854–866. https://doi.org/10.1007/s10924-016-0865-5

98. Ahsan S.M., Thomas M., Reddy K.K., Sooraparaju S.G., Asthana A., Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Biol. Macromol. 2018;110:97–109. https://doi.org/10.1016/j.ijbiomac.2017.08.140

99. Lei B., Guo B., Rambhia K.J., Ma P.X. Hybrid polymer biomaterials for bone tissue regeneration. Front. Med. 2019;13(2):189–201. https://doi.org/10.1007/s11684-018-0664-6

100. Shen R., Xu W., Xue Y., Chen L., Ye H., Zhong E., Ye Z., Gao J., Yan Y. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering. Artif. Cells Nanomed. Biotechnol. 2018;46(sup2):419–430. https://doi.org/10.1080/21691401.2018.1458233

101. Yun Y.P., Lee S.Y., Kim H.J., Song J.J., Kim S.E. Improvement of osteoblast functions by sustained release of bone morphogenetic protein-2 (BMP-2) from heparin-coated chitosan scaffold. Tissue Eng. Regen. Med. 2013;10:183–191. https://doi.org/10.1007/s13770-013-0389-1

102. Russo E., Gaglianone N., Baldassari S., Parodi B., Cafaggi S., Zibana C., Donalisio M., Cagno V., Lembo D., Caviglioli G. Preparation, characterization and in vitro antiviral activity evaluation of foscarnet-chitosan nanoparticles. Colloids Surf. B: Biointerfaces. 2014;118:117–125. https://doi.org/10.1016/j.colsurfb.2014.03.037

103. Cao L., Werkmeister J.A., Wang J., Glattauer V., McLean K.M., Liu C. Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials. 2014;35(9):2730–2742. https://doi.org/10.1016/j.biomaterials.2013.12.028

104. Cao L., Wang J., Hou J., Xing W., Liu C. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials. 2014;35(2):684–698. https://doi.org/10.1016/j.biomaterials.2013.10.005

105. Echave M.C., Saenz del Burgo L., Pedraz J.L., Orive G. Gelatin as Biomaterial for Tissue Engineering. Curr. Pharm. Des. 2017;23(24):3567–3584. https://doi.org/10.2174/0929867324666170511123101

106. Poursamar S.A., Hatami J., Lehner A.N., da Silva C.L., Ferreira F.C., Antunes A.P. Gelatin porous scaffolds fabricated using a modified gas foaming technique: Characterisation and cytotoxicity assessment. Mater. Sci. Eng. C Mater. Biol. Appl. 2015;48:63–70. https://doi.org/10.1016/j.msec.2014.10.074

107. Peng Y.Y., Glattauer V., Ramshaw J.A. Stabilisation of Collagen Sponges by Glutaraldehyde Vapour Crosslinking. Int. J. Biomater. 2017;2017:8947823. https://doi.org/10.1155/2017/8947823

108. Yokota K., Matsuno T., Tabata Y., Mataga I. Evaluation of a Porous Hydroxyapatite Granule and Gelatin Hydrogel Microsphere Composite in Bone Regeneration. J. Hard Tissue Biol. 2017;26(2):203–214. https://doi.org/10.2485/jhtb.26.203

109. Elvin C.M., Brownlee A.G., Huson M.G., Tebb T.A., Kim M., Lyons R.E., Vuocolo T., Liyou N.E., Hughes T.C., Ramshaw J.A., Werkmeister J.A. The development of photochemically crosslinked native fibrinogen as a rapidly formed and mechanically strong surgical tissue sealant. Biomaterials. 2009;30(11):2059–2065 https://doi.org/10.1016/j.biomaterials.2008.12.059

110. Monteiro N., Thrivikraman G., Athirasala A., Tahayeri A., França C.M., Ferracane J.L., Bertassoni L.E. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Dent. Mater. 2018;34(3):389–399. https://doi.org/10.1016/j.dental.2017.11.020

111. Lin C.H., Su J.J., Lee S.Y., Lin Y.M. Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells. J. Tissue Eng. Regen. Med. 2018;12(10):2099–2111. https://doi.org/10.1002/term.2745

112. Kilic Bektas C., Hasirci V. Mimicking corneal stroma using keratocyte-loaded photopolymerizable methacrylated gelatin hydrogels. J. Tissue Eng. Regen. Med. 2018;12(4):e1899–e1910. https://doi.org/10.1002/term.2621

113. Gan Y., Li P., Wang L., Mo X., Song L., Xu Y., Zhao C., Ouyang B., Tu B., Luo L., Zhu L., Dong S., Li F., Zhou Q. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration. Biomaterials. 2017;136:12–28. https://doi.org/10.1016/j.biomaterials.2017.05.017

114. Dong C., Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers. 2016;8(2):42. https://doi.org/10.3390/polym8020042

115. Zhang D., Wu X., Chen J., Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact. Mater. 2017;3(1):129–138. https://doi.org/10.1016/j.bioactmat.2017.08.004

116. Gu L., Shan T., Ma Y.X., Tay F.R., Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol. 2019;37(5):464–491. https://doi.org/10.1016/j.tibtech.2018.10.007

117. Badieyan Z.S., Berezhanskyy T., Utzinger M., Aneja M.K., Emrich D., Erben R., Schüler C., Altpeter P., Ferizi M., Hasenpusch G., Rudolph C., Plank C. Transcript-activated collagen matrix as sustained mRNA delivery system for bone regeneration. J. Control Release. 2016;239:137–148. https://doi.org/10.1016/j.jconrel.2016.08.037

118. Hettiaratchi M.H., Krishnan L., Rouse T., Chou C., McDevitt T.C., Guldberg R.E. Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration. Sci. Adv. 2020;6(1):eaay1240. https://doi.org/10.1126/sciadv.aay1240

119. Peckman S., Zanella J.M., McKay W.F. Infuse® Bone Graft. In: Drug-Device Combinatins for Chronic Diseases. New Jersey, USA: John Wiley & Sons; 2015;241–260. https://doi.org/10.1002/9781119002956.ch09

120. Scalzone A., Flores-Mir C., Carozza D., d’Apuzzo F., Grassia V., Perillo L. Secondary alveolar bone grafting using autologous versus alloplastic material in the treatment of cleft lip and palate patients: systematic review and metaanalysis. Prog. Orthod. 2019;20(1):6. https://doi.org/10.1186/s40510-018-0252-y

121. Bowler D., Dym H. Bone Morphogenic Protein: Application in Implant Dentistry. Dent. Clin. North. Am. 2015;59(2):493–503. https://doi.org/10.1016/j.cden.2014.10.006

122. Geiger M., Li R.H., Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv. Drug Deliv. Rev. 2003;55(12):1613-1629. https://doi.org/10.1016/j.addr.2003.08.010

123. Oryan A., Kamali A., Moshiri A., Baharvand H., Daemi H. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int. J. Biol. Macromol. 2018;107(Pt A):678–688. https://doi.org/10.1016/j.ijbiomac.2017.08.184

124. Dai M., Liu X., Wang N., Sun J. Squid type II collagen as a novel biomaterial: Isolation, characterization, immunogenicity and relieving effect on degenerative osteoarthritis via inhibiting STAT1 signaling in proinflammatory macrophages. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;89:283–294. https://doi.org/10.1016/j.msec.2018.04.021

125. Monaco G., Cholas R., Salvatore L., Madaghiele M., Sannino A. Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;71:335–344. https://doi.org/10.1016/j.msec.2016.10.030

126. Delgado L.M., Fuller K., Zeugolis D.I. Influence of Cross-Linking Method and Disinfection/Sterilization Treatment on the Structural, Biophysical, Biochemical, and Biological Properties of Collagen-Based Devices. ACS Biomater. Sci. Eng. 2018;4(8):2739–2747. https://doi.org/10.1021/acsbiomaterials.8b00052

127. Dai Z., Ronholm J.,TianY., Sethi B., Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J. Tissue Eng. 2016;7:2041731416648810. https://doi.org/10.1177/2041731416648810

128. Nune K.C., Misra R., Bai Y., Li S., Yang R. Interplay of topographical and biochemical cues in regulating osteoblast cellular activity in BMP-2 eluting three-dimensional cellular titanium alloy mesh structures. J. Biomed. Mater. Res. A. 2019;107(1):49–60. https://doi.org/10.1002/jbm.a.36520

129. Cha J.K., Song Y.W., Kim S., Thoma D.S., Jung U.W., Jung R.E. Core Ossification of Bone Morphogenetic Protein-2-Loaded Collagenated Bone Mineral in the Sinus. Tissue Eng. Part A. 2020;10.1089/ten.TEA.2020.0151. https://doi.org/10.1089/ten.tea.2020.0151

130.


Supplementary files

1. Fig. 1. Undifferentiated stem cells are seeded on a polymer scaffold together with differentiating agents and growth factors, followed by implanting in vivo.
Subject
Type Исследовательские инструменты
View (304KB)    
Indexing metadata
2. This is to certify that the paper titled New-generation osteoplastic materials based on biological and synthetic matrices commissioned to us by Dmitry D. Lykoshin, Vladimir V. Zaitsev, Maria A. Kostromina, Roman S. Esipov has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc.
Subject CERTIFICATE OF EDITING
Type Other
View (735KB)    
Indexing metadata
  • Today, polymer and biocomposite matrices show great application promise, compared to the xenogenic matrix.
  • Particular attention is paid to the possibility of immobilizing osteogenic factors and target pharmaceutical substances on the scaffold material to control the dosage and delivery kinetics.
  • Polymeric and biocomposite materials can retard the release of pharmaceutical substances at the implantation site, reduce the toxicity, and prolong the therapeutic effect.
  • The use of composite scaffolds of different compositions in vivo results in high osteogenesis, promotes the initiation of biomineralization, and allows the tuning of the degradation rate of the material.

Review

For citations:


Lykoshin D.D., Zaitsev V.V., Kostromina M.A., Esipov R.S. New-generation osteoplastic materials based on biological and synthetic matrices. Fine Chemical Technologies. 2021;16(1):36-54. https://doi.org/10.32362/2410-6593-2021-16-1-36-54

Views: 722


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)