Alcoxotechnology for obtaining heat-resistant materials based on rhenium and ruthenium
https://doi.org/10.32362/2410-6593-2020-15-6-67-76
Abstract
Objectives. To develop physical and chemical bases and methods to obtain rhenium–ruthenium isoproxide Re4-yRuyO6(OPri)10 —a precursor for obtaining a high-temperature alloy—from ruthenium acetylacetonate and rhenium isoproxide acquired by electrochemical methods.
Methods. IR spectroscopy (EQUINOX 55 Bruker, Germany), X-ray phase and elemental analyses, energy-dispersive microanalysis (EDMA, SEM JSM5910-LV, analytical system AZTEC), powder X-ray diffraction (diffractometer D8 Advance Bruker, Germany), experimental station XSA beamline at the Kurchatov Synchrotron Radiation Source.
Results. The isoproxide complex of rhenium–ruthenium Re4-yRuyO6(OPri)10 was obtained, and its composition and structure were established. Previously conducted quantum chemical calculations on the possibility of replacing rhenium atoms with ruthenium atoms in the isopropylate complex were experimentally proven, and the influence of the electroconductive additive on the composition of the obtained alloy was revealed.
Conclusions. Physical and chemical bases and methods for obtaining rhenium–ruthenium isoproxide Re4-yRuyO6(OPri)10 were developed. The possibility of using rhenium–ruthenium Re4-yRuyO6(OPri)10 as a precursor in the production of ultra- and nanodisperse rhenium–ruthenium alloy powders at a record low temperature of 650°C were shown.
About the Authors
E. S. KulikovaRussian Federation
Elizaveta S. Kulikova, Cand. of Sci. (Chemistry), Head of the Laboratory, K.A. Bolshakov Department of Chemistry and Technology of Rare Elements, M.V. Lomonosov Institute of Fine Chemical Technologies. Scopus Author ID 57195299209, Researcher ID O-8759-2017
86, Vernadskogo pr., Moscow, 119571
O. V. Chernyshova
Russian Federation
Oxana V. Chernyshova, Cand. of Sci. (Engineering), Docent, K.A. Bolshakov Department of Chemistry and Technology of Rare Elements, M.V. Lomonosov Institute of Fine Chemical Technologies. Scopus Author ID 8961258100
86, Vernadskogo pr., Moscow, 119571
L. A. Nosikova
Russian Federation
Lubov A. Nosikova, Cand. of Sci. (Chemistry), Associate Professor, K.A. Bolshakov Department of Chemistry and Technology of Rare Elements, M.V. Lomonosov Institute of Fine Chemical Technologies. Scopus Author ID 18434729100, Researcher ID O-2596-2017
86, Vernadskogo pr., Moscow, 119571
R. D. Svetogorov
Russian Federation
Roman D. Svetogorov, Research Engineer, National Research Center Kurchatov Institute. Scopus Author ID 55920161900, Researcher ID A-7091-2015
1, pl. Akademika Kurchatova, Moscow, 123182
D. V. Drobot
Russian Federation
Dmitry V. Drobot, Dr. of Sci. (Chemistry), Professor, K.A. Bolshakov Department of Chemistry and Technology of Rare Elements, M.V. Lomonosov Institute of Fine Chemical Technologies. Scopus Author ID 35580931100, ResearcherID AAR-3711-2019
86, Vernadskogo pr., Moscow, 119571
I. A. Mikheev
Russian Federation
Ilya A. Mikheev, Engineer, Mobile Solutions Engineering Center
86, Vernadskogo pr., Moscow, 119571
References
1. Palant A.A., Troshkina I.D., Chekmarev A.M., Kostylev A.I. Tekhnologiya reniya (Rhenium technology). Moscow: Galleya-Print; 2018. 324 p. (in Russ.). ISBN: 9785-906693-33-4
2. Korovin S.S., et al. Redkie i rasseyannye elementy. Khimiya i tekhnologiya: uchebnik dlya vuzov: v 3-kh kn. (Rare and dispersed elements. Chemistry and technology. Textbook for universities, 3 volumes). V. 3. Korovin S.S., Bukin V.I., Fedorov P.I., Reznik A.M. Moscow: MISiS Publishing House; 2003. 440 p. (in Russ.). ISBN 5-87623014-6
3. Kablov E.N. (Ed.). Vysokorenievye zharoprochnye splavy, tekhnologiya i oborudovanie dlya proizvodstva splavov i lit’ya monokristallicheskikh turbinnykh lopatok GTD (Highroot heat-resistant alloys technology and equipment for the production of alloys and casting of single-crystal turbine blades GTE): collection of articles; Moscow: VIAM; 2004. 177 p. (in Russ.).
4. Kablov E.N. New generation of heat-resistant alloys for engines. Voennyi parad = Military parade. 2010;2(98):3233 (in Russ.).
5. Kablov E.N., Lomberg B.S., Ospennikova O.G. Creation of modern heat-resistant materials and technologies for their production for aircraft engine building. Kryl’ya Rodiny = Wings of Motherland. 2012;3-4:34-38 (in Russ.).
6. Reedijk J., Poeppelmeier K. Comprehensive Inorganic Chemistry II: From Elements to Applications: 2nd Edition. Amsterdam: Elsevier; 2013. Р. 455-470.
7. Drobot D.V., Scheglov P.A., Seisenbaeva G.A., Kessler V.G. Rhenium oxoalkoxocomplexes as precursors for preparation of inorganic materials. Izvestiya Vuzov. Tsvetnaya Metallurgiya = Universities’ Proceedings. Non-Ferrous Metallurgy. 2002;6:32-37 (in Russ.).
8. Kulikova E.S., Drobot D.V, Yarzhemsky V.G., Il’in E.G. Structure and Thermodynamic Stability of Rhenium and Ruthenium Oxoalkoxo Derivatives Mx N4-x O6 (OMe) 10 (M, N = Re, Ru; x = 4–0). Russ. J. Inorg. Chem. 2018;63:14461452. https://doi.org/10.1134/S0036023618110116
9. Kablov E.N. Svetlov I.L., Petrushin N.V. Nickel heat-resistant alloys alloyed with ruthenium. Aviacionnye Materialy i Tehnologii = Aviation materials and technologies. 2004;1:80-90 (in Russ.).
10. Zheng Y., Wang X., Dong J., Han Y. Effect of Ru addition on cast nickel base superalloy with low content of Cr and high content of W. In: Superalloys 2000; Green K.A., McLean M., Olson S., Schirn J.J. (Eds.). Pennsylvania: A Publication of the Minerals, Met. & Mat. Soc. 2000. P. 305-311. https://doi.org/10.7449/2000/Superalloys_2000_305_311
11. Shcheglov P.A. Mono-, bi- and trimetallic oxoalkoxo derivatives (synthesis, properties and application): Abstr. Cand. Sci. Thesis. Moscow: MITHT, 2002. 25 p. (in Russ.).
12. Turova N.Ya., Turevskaya E.P., Kessler V.G. The Chemistry of Metal Alkoxides. Springer; 2014. 584 p.
13. Hubert-Pfalzgraf L.G. To what extent can design of molecular precursors control the preparation of high tech oxides? J. Mater. Chem. 2004;14:3113-3123. https://doi.org/10.1039/B407204A
14. Malyutin A.V. Nanostructures of metal-carrier interaction in supported catalysts Me/Ce 0.72 Zr0.18 Pr0.1 O 2 (where Me = Pt, Pd, Ru): Cand. Sci. Thesis. Moscow: RHTU; 2014. 198 p. (in Russ.).
15. Nakamoto K. Infrakrasnye spektry neorganicheskikh i koordinatsionnykh soedinenii (Infrared spectra of inorganic and coordination compounds). Moscow: Mir; 1966. 411 p. (in Russ.).
16. Nakanisi K. Infrakrasnye spektry i stroenie organicheskikh soedinenii. Prakticheskoe rukovodstvo (Infrared spectra and structure of organic compounds. A practical guide). Moscow: Mir; 1965. 216 p. (in Russ.).
17. Nedoma I. Rasshifrovka rentgenogramm poroshkov (Decoding of powder X-ray diffraction patterns). Moscow: Metallurgiya; 1975. 423 p. (in Russ.).
18. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. Belok/XSA diffraction beamline for studying crystalline samples at Kurchatov Synchrotron Radiation Source. Cryst. Res. Tech. 2020;55(5):1900184. https://doi.org/10.1002/crat.201900184
19. Svetogorov R.D. Computer program Dionis Diffraction Open Integration Software: RF, Certificate of State Registration No. 2018660965, 30.08.2018.
20. Hubbard C.R., Evans E.H., Smith D.K. The reference intensity ratio, I/Ic, for computer simulated powder patterns. J. Appl. Crystallogr. 1976;9(2):169-174. https://doi.org/10.1107/S0021889876010807
21. Nakamoto K. IK-spektry i spektry KR neorganicheskikh i koordinatsionnykh soedinenii (IR and Raman spectra of inorganic and coordination compounds). Moscow: Mir; 1991. 536 p. (in Russ.). ISBN 5-03-001749-6
22. Hajba L., Mink J., KuЁhn F.E., Goncёalves I.S. Raman and infrared spectroscopic and theoretical studies of dinuclear rhenium and osmium complexes, M2 (O2 CCH3 )4 X2 (M = Re, Os; X = Cl, Br). Inorg. Chim. Acta. 2006;359:4741-4756. https://doi.org/10.1016/j.ica.2006.03.019
23. Yukhnevich G.V. Infrakrasnaya spektroskopiya vody (Infrared spectroscopy of water.) Moscow: Nauka; 1973. 208 p. (in Russ.).
24. Kozlova N.I., Kessler V.G., Turova N.Ya., Belokon A.I. Mass spectrometric and IR spectral study of molybdenum (VI) alcoholates. Polymer of alcoholates. Koord. khimiya = Russ. J. Coord. Chem.1989;15(11):1524-1534 (in Russ.).
25. Sheibley D.W., Fowler M.H. Infrared spectra of various metal oxides in the region of 2 to 26 microns. NASALangley; 1966. 65 p.
26. Lyakishev N.P. (Ed.). Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: v 3-kh t.; T. 3. Kn. 2. Renii–Rutenii (State diagrams of binary metal systems: in 3 volumes. V. 3. Book 2. Rhenium–Ruthenium). Moscow: Mashinostroenie; 1996; 2000. P. 199.
Supplementary files
|
1. Electron microscopy of rhenium isoproxide | |
Subject | ||
Type | Исследовательские инструменты | |
View
(661KB)
|
Indexing metadata |
|
2. This is to certify that the paper titled Alcoxotechnology for obtaining heat-resistant materials based on rhenium and ruthenium commissioned to us by Elizaveta S. Kulikova, Oxana V. Chernyshova, Lubov A. Nosikova, Roman D. Svetogorov, Dmitry V. Drobot, Ilya A. Mikheev has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc. | |
Subject | CERTIFICATE OF EDITING | |
Type | Other | |
View
(501KB)
|
Indexing metadata |
- Rhenium–ruthenium alloys were obtained at the record low temperature of 650°C and a pressure of 5 atm.
- The advantage of using tetrabutylammonium bromide as an electrically conductive supplement in comparison with the widely used lithium chloride was demonstrated.
- The resulting bimetallic rhenium–ruthenium isopropylate complex was characterized by a set of analysis methods (IR, X-ray phase, and elemental analyses). The presence of rhenium–ruthenium bonds was shown, confirming the quantum chemical calculations previously performed in the Priroda 06 program about the possibility of bimetallic alkoxocomplex formation.
Review
For citations:
Kulikova E.S., Chernyshova O.V., Nosikova L.A., Svetogorov R.D., Drobot D.V., Mikheev I.A. Alcoxotechnology for obtaining heat-resistant materials based on rhenium and ruthenium. Fine Chemical Technologies. 2020;15(6):67-76. https://doi.org/10.32362/2410-6593-2020-15-6-67-76