1. Miao F., Wu W., Li Q., Miao R., Tao B. Fabrication and Application of Molybdenum Trioxide Nanostructure Materials for Electrochemical Capacitors. Int. J. Electrochem. Sci. 2017;12:12060-12073. https://doi.org/10.20964/2017.12.200
2. Ban D., Xu N., Deng S., Chen J., She J. Lowtemperature Synthesis of Large-area Films of Molybdenum Trioxide Microbelts in Air and the Dependence of Their Field Emission Performance on Growth Conditions. J. Mater. Sci. Technol. 2010;26(7):584-588. https://doi.org/10.1016/S10050302(10)60089-8
3. Li G., Jiang L., Pang S., Peng H. Zhang Z. Molybdenum Trioxide Nanostructures: The Evolution from Helical Nanosheets to Crosslike Nanoflowers to Nanobelts. J. Phys. Chem. B. 2006;110(48):24472-24475. https://doi.org/10.1021/jp064855v
4. Hu X., Zhang W., Liu X., Meia Y., Huang Y. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 2015;44(8):2376-2404. https://doi.org/10.1039/C4CS00350K
5. Predel F. Phase diagram of Mo-O (molybdenum- oxygen) system. In: Predel F. (eds.) Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys. Physical Chemistry. Berlin, Heidelberg: Springer; 2016. V. 12D.
6. Karelin V.A. Himiya i tekhnologiya molibdena i vol’frama (Chemistry and technology molybdenum and tungstem). Tomsk: Tomsk Polytechnic University; 2017. 58 p. (in Russ.).
7. Henrich V.E., Cox P.A. The surface science of metal oxides. Cambridge: Cambridge University Press; 1996. 480 p.
8. Kihlborg L. Studies on molybdenum oxides. Acta Chem. Scand. 1959;13:954-962. https://doi.org/10.3891/acta.chem.scand.13-0954
9. Brandt B.G. Skapski A.C. A refinement of the crystal structure of molybdenum dioxide. Acta Chem. Scand. 1967;21:661672. https://doi.org/10.3891/acta.chem.scand.21-0661
10. Tsuda N., Nasu K., Fujimori A., Siratori K. Electronic conduction in oxides. New York: Springer-Verlag; 1991. 323 p.
11. Kihlbord L. Least squares refinement of the crystal structure of molybdenum. Arkiv för Kemi. 1963;21:357-364.
12. Yun J., Jang W., Lee T., Lee Y., Soon A. Aligning the band structures of polymorphic molybdenum oxides and organic emitters in light-emitting diodes. Phys. Rev. Applied. 2017;7:024025-1-024025-8. https://doi.org/10.1103/PhysRevApplied.7.024025
13. Mendes F.M. Weibel D.E., Blum R.P., Middeke J. Preparation and characterization of well-ordered MoOx films on Cu3Au(100)-oxygen substrate (CAOS). Catal. Today. 2008;133(1):187-191. https://doi.org/10.1016/j.cattod.2007.11.046
14. Tomina N.N., Pimerzin A.A., Moiseev I.K. Sulfide catalysts for hydropurification of oil fractions. Russ. J. Gen. Chem. 2009;79(6):1274-1288. https://doi.org/10.1134/S1070363209060449
15. Méndez-Vivar J. Synthesis of molybdenum oxides by the sol-gel method. Inorg. Chim. Acta. 1991;179(1):77-82. https://doi.org/10.1016/S0020-1693(00)85376-1
16. Ganguly A., George R. Synthesis, characterization and gas sensitivity of MoO3 nanoparticles. Bull. Mater. Sci. 2007;30(2):183-185. https://doi.org/10.1007/s12034-0070033-6
17. Pergament A.L., Malinenko V.P., Aleshina L.A., Kazakova E.L., Kuldin N.A. Electrical switching in thin film structures based on molybdenum oxides. J. Exp. Phys. 2014;2014:6 p. https://doi.org/10.1155/2014/951297
18. Chiang T.H., Yeh H.C. The synthesis of α-MoO3 by ethylene glycol. Materials. 2013;6(10):4609-4625. https://doi.org/10.3390/ma6104609
19. Parviz D., Kazemeini M., Rashidi A.M., Jozani J. Synthesis and characterization of MoO3 nanostructures by solution combustion method employing morphology and size control. J. Nanopart. Res. 2010;12(4):1509-1521. https://doi.org/10.1007/s11051-009-9727-6
20. Siciliano T., Tepore A., Filippo E., Micocci G., Tepore M. Characteristics of molybdenum trioxide nanobelts prepared by thermal evaporation technique. Mater. Chem. Phys. 2009;114(2-3):687-691. https://doi.org/10.1016/j.matchemphys.2008.10.018
21. Gupta C.K. Extractive metallurgy of molybdenum. Boca Raton: CRC Press; 1992. 404 p.
22. Nakamura I., Miras H.N., Fujiwara A., Fujibayashi M., ets. Investigating the formation of “molybdenum blues” with gel electrophoresis and mass spectrometry. J. Am. Chem. Soc. 2015;137(20):6524-6530. https://doi.org/10.1021/ja512758j
23. Koyun O., Gorduk S., Arvas M.B., Sahin Y. Direct, one-step synthesis of molybdenum blue using an electrochemical method, and characterization studies. Synth. Met. 2017;233:111-118. https://doi.org/10.1016/j.synthmet.2017.09.009
24. Kazenas E.K., Tsvetkov Yu.V. Isparenie oksidov (Evaporation of oxides). Moscow: Nauka; 1997. 543 p. (in Russ.).
25. Yuhnevich Yu.G. Advances in the use of IRspectroscopy to characterize OH bonds. Uspekhi Khimii = Russ. Chem. Rev. 1963;32(11):1397-1423 (in Russ.).
26. Li C., Xin Q., Wang K.-L., Guo X. FT-IR Emission spectroscopy studies of molybdenum oxide and supported molybdena on alumina, silica, zirconia, and titania. Appl. Spectrosc. 1991;45(5):874-882. https://doi.org/10.1366/0003702914336651
27. Chen D., Liu M., Yin L., Li T. et al. Singlecrystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance. J. Mater. Chem. 2011;21(25):9332-9342. https://doi.org/10.1039/C1JM11447F
28. Pavlova S.S., Kotvanova M.K. IR-spectra and electromechanical properties of transition metal oxide bronzes. Vestnik Yugorskogo gosudarstvennogo universiteta = Yugra State University Bulletin. 2008;10(3):61-63 (in Russ.).