Preview

Fine Chemical Technologies

Advanced search

Photoalignment and photopatterning: New liquid crystal technology for displays and photonics

https://doi.org/10.32362/2410-6593-2020-15-2-7-20

Full Text:

Abstract

Objectives. Since the end of the 20th century, liquid crystals have taken a leading position as a working material for the display industry. In particular, this is due to the advances in the control of surface orientation in thin layers of liquid crystals, which is necessary for setting the initial orientation of the layer structure in the absence of an electric field. The operation of most liquid crystal displays is based on electro-optical effects, arising from the changes in the initial orientation of the layers when the electric field is turned on, and the relaxation of the orientation structure under the action of surfaces after the electric field is turned off. In this regard, the high quality of surface orientation directly affects the technical characteristics of liquid crystal displays. The traditional technology of rubbing substrates, currently used in the display industry, has several disadvantages associated with the formation of a static charge on the substrates and surface contamination with microparticles. This review discusses an alternative photoalignment technology for liquid crystals on the surface, using materials sensitive to polarization of electromagnetic irradiation. Also, this review describes various applications of photosensitive azo dyes as photo-oriented materials.

Results. The alternative photoalignment technology, which employs materials sensitive to electromagnetic polarization, allows to create the orientation of liquid crystals on the surface without mechanical impact and to control the surface anchoring force of a liquid crystal. This provides the benefits of using the photoalignment technology in the display industry and photonics—where the use of the rubbing technology is extremely difficult. The optical image rewriting mechanism is discussed, using electronic paper with photo-inert and photoaligned surfaces as an example. Further, different ways of using the photoalignment technology in liquid crystal photonics devices that control light beams are described. In particular, we consider switches, controllers and polarization rotators, optical attenuators, switchable diffraction gratings, polarization image analyzers, liquid crystal lenses, and ferroelectric liquid crystal displays with increased operation speed.

Conclusions. The liquid crystal photoalignment and photopatterning technology is a promising tool for new display and photonics applications. It can be used for light polarization rotation; voltage controllable diffraction; fast switching of the liquid crystal refractive index; alignment of liquid crystals in super-thin photonic holes, curved and 3D surfaces; and many more applications.

About the Author

V. G. Chigrinov
School of Physics and Optoelectronic Engineering, Foshan University
China

Vladimir G. Chigrinov, Dr. of Sci. (Physics), Рrofessor, Honorary Member of the International Display Society

18, Jiang-Wan-Yi-Lu, Chancheng, Foshan, Guangdong, 528000

Scopus Author ID: 35601969500, ResearcherID: I-7648-2013



References

1. Ichimura K. Photoalignment of Liquid-Crystal Systems. Chem. Rev. 2000;100(5):1847-1873. https://doi.org/10.1021/cr980079e

2. Schadt M., Seiberle H., Schuster A. Optical patterning of multidomain liquid-crystal displays with wide viewing angles. Nature. 1996;381(6579):212-215. https://doi.org/10.1038/381212a0

3. O’Neill M., Kelly S.M. Photoinduced surface alignment for liquid crystal display. J. Phys. D: Appl. Phys. 2000;33(10):R67-R84. https://doi.org/10.1088/00223727/33/10/201

4. Gibbons W.M., Shannon P.J., Sun S.-T., Swetlin B.J. Surface-mediated alignment of nematic liquid crystals with polarized laser light. Nature. 1991:351(6321):49-50. https://doi.org/10.1038/351049a0

5. Chatelain P. Sur l’orientation des cristaux liquides par les surfaces frottées. Bulletin de Minéralogie. 1943;66(1-6):105-130 (in French). https://doi.org/10.3406/bulmi.1943.4528

6. Janning J.L. Thin film surface orientation for liquid crystals. Appl. Phys. Lett. 1972;21(4):173-174. https://doi.org/10.1063/1.1654331

7. Chigrinov V.G., Kozenkov V.M., Kwok H.S. Photoalignment of Liquid Crystalline Materials: Physics and Applications. Wiley; 2008. 248 p.

8. Yaroshchuk O., Reznikov Y. Photoalignment of liquid crystals: Basics and current trends. J. Mater. Chem. 2012;22(2):286-300. https://doi.org/10.1039/C1JM13485J

9. Nishikawa M., Taheri B., and West J.L. Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure. Appl. Phys. Lett. 1998;72:2403-2405. https://doi.org/10.1063/1.121390

10. Gong S., Kanicki J., Ma L., Zhong J. Ultraviolet-light induced liquid-crystal alignment on polyimide films. Jpn. J. Appl. Phys. 1999;38:5996-6004. https://doi.org/10.1143/JJAP.38.5996

11. Dyadyusha A.G., Marusii T.Ya., Reznikov Yu.A., Khizhnyak A.I., Reshetnyak V.Yu. Orientational effect due to a change in the anisotropy of the interaction between a liquid crystal and a bounding surface. JETP Lett. 1992;56:17-21.

12. Chigrinov V.G., Kwok H.S. Photoalignment of liquid crystals: applications to fast response ferroelectric liquid crystals and rewritable photonic devices. In: Progress in Liquid Crystal Science and Technology: in Honor of Shunsuke Kobayashi’s 80th Birthday. Singapore: World Scientific; 2013. p. 199-226. https://doi.org/10.1142/9789814417600_0009

13. Chigrinov V.G. Liquid Crystal Photonics. Nova Science Publishers; 2014. 204 p. ISBN: 978-1-62948-315-3

14. Xu P., Chigrinov V., Kwok H.S. Optical analysis of a liquid-crystal switch system based on total internal reflection. J. Opt. Soc. Am. A. 2008;25(4):866-873. https://doi.org/10.1364/JOSAA.25.000866

15. Muravsky A., Chigrinov V. Optical switch based on nematic liquid crystals. IDW’05 Digest; 2005. 223 p.

16. Maksimochkin A.G., Pasechnik S.V., Tsvetkov V.A., Yakovlev D.A., Maksimochkin G.I., Chigrinov V.G. Electrically controlled switching of light beams in the plane of liquid crystal layer. Opt. Commun. 2007;270:273-279. https://doi.org/10.1016/j.optcom.2006.09.014

17. Zhuang Z., Suh S.W., Patel J.S. Polarization controller using nematic liquid crystals. Opt. Lett. 1999;24:694. https://doi.org/10.1364/OL.24.000694

18. Ertman S., Srivastava A.K., Chigrinov V.G., Chychłowski M.S., Woliński T.R. Patterned alignment of liquid crystal molecules in silica micro-capillaries. Liq. Cryst. 2013;40(1):1-6. https://doi.org/10.1080/02678292.2012.725869

19. Du F., Lu Y.-Q., Wu S.-T. Electrically tunable liquid-crystal photonic crystal fiber. Appl. Phys. Lett. 2004;85(12):2181-2183. https://doi.org/10.1063/1.1796533

20. Haakestad M.W., Alkeskjold T.T., Nielsen M.D., Scolari L., Riishede J., Engan H.E., Bjarklev A. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photonic. Tech. L. 2005;17(4):819821. https://doi.org/10.1109/LPT.2004.842793

21. Scolari L., Alkeskjold T.T., Riishede J., Bjarklev A., Hermann D.S., Anawati, Nielsen M.D., Bassi P. Continuously tunable devices based on electrical control of dualfrequency liquid crystal filled photonic bandgap fibers. Opt. Express. 2005;13(19):7483-7496. https://doi.org/10.1364/OPEX.13.007483

22. Valyukh I., Arwin H., Chigrinov V., Valyukh S. UVinduced in-plane anisotropy in layers of mixture of the azodyes SD-1/SDA-2 characterized by spectroscopic ellipsometry. Phys. Status Solidi C. 2008;5(5):1274-1277. https://doi.org/10.1002/pssc.200777881

23. Cimrova V., Neher D., Hilderbrandt R., Hegelich M., von der Lieth A., Marowsky G., Hagen R., Kostromine S., Bieringer T. Comparison of the birefringence in an azobenzene-side-chain copolymer induced by pulsed and continuous-wave radiation. Appl. Phys. Lett. 2002;81:1228. https://doi.org/10.1063/1.1499766

24. Kiselev A.D., Pasechnik S.V., Shmeliova D.V., Chopik A.P., Semerenko D.A., Dubtsov A.V. Waveguide Propagation of Light in Polymer Porous Films Filled with Nematic Liquid Crystals. Advances in Condensed Matter Physics. 2019;1539865. https://doi.org/10.1155/2019/1539865

25. Presnyakov V., Asatryan K., Galstian T., Chigrinov V. Optical polarization grating induced liquid crystal microstructure using azo-dye command layer. Opt. Express. 2006;14:10558-10564. https://doi.org/10.1364/OE.14.010558

26. Wang X.Q., Srivastava A.K., Fan F., Zheng Z.G., Shen D., Chigrinov V.G., Kwok H.S. Electrically/optically tunable photo-aligned hybrid nematic liquid crystal Dammann grating. Opt. Lett. 2016;41:5668-5671. https://doi.org/10.1364/OL.41.005668

27. Luo D., Dai H.T., Sun X.W. Polarization tunable circular Dammann grating generated from azodye doped nematic liquid crystals. Proceedings of SPIE. 2011;7934:79340H. https://doi.org/10.1117/12.874139

28. Luo D., Sun X.W., Dai H.T., Demir H.V. Polarizationdependent circular Dammann grating made of azo-dye-doped liquid crystals. Appl. Opt. 2011;50(15):2316-2321. https://doi.org/10.1364/AO.50.002316

29. Wang X., Wu S., Yang W., Yuan C., Li X., Liu Z., Tseng M., Chigrinov V.G., Kwok H., Shen D., Zheng Z. LightDriven Liquid Crystal Circular Dammann Grating Fabricated by a Micro-Patterned Liquid Crystal Polymer Phase Mask. Polymers. 2017;9:380. https://doi.org/10.3390/polym9080380

30. Zhao X., Bermak A., Boussaid F. A low cost CMOS polarimetric ophthalmoscope scheme for cerebral malaria diagnostics. IFIP Advances in Information and Communication Technology. 2012;379 AICT:1-9. https://doi.org/10.1007/9783-642-32770-4_1

31. Slussarenko S., Murauski A., Du T., Chigrinov V., Marrucci L., Santamato E. Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Express. 2011;19(5):40854090. https://doi.org/10.1364/OE.19.004085

32. Wei B.-Y., Liu S., Chen P., Qi S.-X., Zhang Y., Hu W., Lu Y.-Q., Zhao J.-L. Vortex Airy beams directly generated via liquid crystal q-Airy-plates. Appl. Phys. Lett. 2018;112(12):121101. https://doi.org/10.1063/1.5019813

33. Aizawa M., Ota M., Hisano K., Akamatsu N., Sasaki T., Barrett C.J., Shishido A. Direct fabrication of a q-plate array by scanning wave photopolymerization. J. Opt. Soc. Am. B: Optical Physics. 2019;36(5):D47-D51. https://doi.org/10.1364/JOSAB.36.000D47

34. Huang Y.-H., Li M.-S., Fuh A.Y.-G. The application of liquid crystal q-plates for modulating Gaussian Beam. Proceedings of the International Display Workshops. 2013;1:196-197.

35. Wang X., Srivastava A., Chigrinov V., Kwok H. Switchable Fresnel lens based on micropatterned alignment. Opt. Lett. 2013;38:1775-1777. https://doi.org/10.1364/OL.38.001775

36. Lin L.-C., Jau H.-C., Lin T.-H., Fuh A.Y.-G. Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal. Opt. Express. 2007;15(6):2900-2906. https://doi.org/10.1364/OE.15.002900

37. Lin L.-C., Cheng K.-T., Liu C.-K., Ting C.-L., Jau H.-C., Lin T.-H., Fuh A.Y.-G. Fresnel lenses based on dyedoped liquid crystals. Proceedings of SPIE. 2008;6911:69110I. https://doi.org/10.1117/12.762550

38. Huang Y.-H., Huang S.-W., Chu S.-C., Fuh Y.-G. High-efficiency Fresnel lens fabricated by axially symmetric photoalignment method. Appl. Optics. 2012;51(32):77397744. https://doi.org/10.1364/AO.51.007739

39. Wang X.Q., Fan F., Du T., Tam A.M., Ma Y., Srivastava A.K., Chigrinov V.G., Kwok H.S. Liquid crystal Fresnel zone lens based on single-side-patterned photoalignment layer. Appl. Opt. 2014;53:2026-2029. https://doi.org/10.1364/AO.53.002026

40. Wang X.Q., Yang W.Q., Liu Z., Duan W., Hu W., Zheng Z.G., Shen D., Chigrinov V.G., Kwok H.S. Switchable Fresnel lens based on hybrid photo-aligned dual frequency nematic liquid crystal. Opt. Mater. Express. 2017;7:8-15. https://doi.org/10.1364/OME.7.000008

41. Tam A.M.W., Fan F., Du T., Hu W., Zhang W., Zhao C., Wang X., Ching K.L., Li G., Luo H., Chigrinov V.G., Wen S., Kwok H.S. Bifocal Optical-Vortex Lens with Sorting of the Generated Nonseparable Spin-Orbital Angular-Momentum States. Phys. Rev. Applied. 2017;7:034010. https://doi.org/10.1103/PhysRevApplied.7.034010

42. Duan W., Chen P., Ge S.-J., Wei B.-Y., Hu W., Lu Y. Helicity-dependent forked vortex lens based on photopatterned liquid crystals. Opt. Express 2017;25(13):1405914064. https://doi.org/10.1364/OE.25.014059

43. He Z., Lee Y.-H., Chen R., Chanda D., Wu S.-T. Switchable Pancharatnam-Berry microlens array with nanoimprinted liquid crystal alignment. Opt. Lett. 2018;43(20):50625065. https://doi.org/10.1364/OL.43.005062

44. Zhan T., Xiong J., Lee Y.-H., Wu S.-T. Polarizationindependent Pancharatnam-Berry phase lens system. Opt. Express. 2018;26(26):35026-35033. https://doi.org/10.1364/OE.26.035026

45. Duan W., Chen P., Ge S.-J., Liang X., Hu W. A fast-response and helicity-dependent lens enabled by micro-patterned dual-frequency liquid crystals. Crystals. 2019;9(2):111. https://doi.org/10.3390/cryst9020111

46. Li S., Liu Y., Li Y., Liu S., Chen S., Su Y. Fast-response Pancharatnam-Berry phase optical elements based on polymerstabilized liquid crystal. Opt. Express. 2019;27(16):2252222531. https://doi.org/10.1364/OE.27.022522

47. Ren J., Wang W., Yang W., Yuan C., Zhou K., Li X., Tam A.M., Meng C., Sun J., Chigrinov V., Kwok H., Wang X., Zheng Z., Shen D. Micro-patterned liquid crystal Pancharatnam–Berry axilens. Chin. Opt. Lett. 2018;16:062301. https://www.osapublishing.org/col/abstract.cfm?uri=col-16-6-062301

48. Zhou Y., Yin Y., Yuan Y., Lin T., Huang H., Yao L., Wang X., Tam A.M.W., Fan F., Wen S. Liquid crystal Pancharatnam–Berry phase lens with spatially separated focuses. Liq. Cryst. 2019;46(7):995-1000. https://doi.org/10.1080/02678292.2018.1550820

49. Ke Y., Liu Y., Zhou J., Liu Y., Luo H., Wen S. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens. Appl. Phys. Lett. 2016;108(10):101102. https://doi.org/10.1063/1.4943403

50. Chen H.-T., Taylor A.J., Yu N. A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 2016;79(7):076401. https://doi.org/10.1088/00344885/79/7/076401

51. Lagerwall S.T. Ferroelectric and Antiferroelectric Liquid Crystals. Weinheim: Wiley-VCH; 1999.

52. Favalora G.E., Napoli J., Hall D.M., Dorval R.K., Giovinco M.G., Richmond M.J., Chun W.S. 100 million-voxel volumetric display. Proceedings of SPIE. 2002;4712:300-312. https://doi.org/10.1117/12.480930

53. Nagaraj M., Panarin Y.P., Manna U., Vij J.K., Keith C., Tschierske C. Electric field induced biaxiality and the electrooptic effect in a bent-core nematic liquid crystal. Appl. Phys. Lett. 2010;96(1):011106. https://doi.org/10.1063/1.3280817

54. Kim D.-W., Yu C.-J., Lim Y.-W., Na J.-H., Lee S.D. Mechanical stability of a flexible ferroelectric liquid crystal display with a periodic array of columnar spacers. Appl. Phys. Lett. 2005;87(5):051917. https://doi.org/10.1063/1.2007856

55. Kumar A., Prakash J., Deshmukh A.D., Haranath D., Silotia P., Biradar A.M. Enhancing the photoluminescence of ferroelectric liquid crystal by doping with ZnS quantum dots. Appl. Phys. Lett. 2012;100(13):134101. https://doi.org/10.1063/1.3698120

56. Shi L., Ma Y., Srivastava A., Chigrinov V., Kwok H.S. Field Sequential Color Displays based on Reflective Electrically Suppressed Helix Ferroelectric Liquid Crystal. SID – 2015 International Symposium. 2015; San Jose, CA, USA.

57. Srivastava A.K., Shi L., Kwok H.S. Modern display applications based on ESH ferroelectric liquid crystals. Proceedings of the International Display Workshops. 2018;1:62-65.


Supplementary files

1. Coupling of SAM-OAM states at the output of the PBOVL. (a) For the right-handed circularly (RHC) polarized incident beam, each photon of the focusing output beam possessed an OAM of −2Qℏ and was left-handed circularly (LHC) polarized with a corresponding SAM of +ℏ. (b) For the LHC polarized incident beam, each photon of the defocusing output beam possessed an OAM of +2Qℏ and was RHC polarized with a corresponding SAM of −ℏ.
Subject
Type Research Instrument
View (172KB)    
Indexing metadata
2. This is to certify that the paper titled Photoalignment and photopatterning: New liquid crystal technology for displays and photonics commissioned to Enago by Vladimir G. Chigrinov has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc.
Subject CERTIFICATE OF EDITING
Type Other
View (392KB)    
Indexing metadata

The liquid crystal photoalignment and photopatterning technology is a promising tool for new display and photonics applications. For instance, it can be utilized for rotation of light polarization, voltage-controllable diffraction, fast switching of the liquid crystal refractive index, alignment of liquid crystals in super-thin photonic holes as well as in curved and 3D surfaces.

For citation:


Chigrinov V.G. Photoalignment and photopatterning: New liquid crystal technology for displays and photonics. Fine Chemical Technologies. 2020;15(2):7-20. https://doi.org/10.32362/2410-6593-2020-15-2-7-20

Views: 196


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)