Preview

Fine Chemical Technologies

Advanced search

Сationic liposomes as delivery systems for nucleic acids

https://doi.org/10.32362/2410-6593-2020-15-1-7-27

Full Text:

Abstract

Objectives. Gene therapy is based on the introduction of genetic material into cells, tissues, or organs for the treatment of hereditary or acquired diseases. A key factor in the success of gene therapy is the development of delivery systems that can efficiently transfer genetic material to the place of their therapeutic action without causing any associated side effects. Over the past 10 years, significant effort has been directed toward creating more efficient and biocompatible vectors capable of transferring nucleic acids (NAs) into cells without inducing an immune response. Cationic liposomes are among the most versatile tools for delivering NAs into cells; however, the use of liposomes for gene therapy is limited by their low specificity. This is due to the presence of various biological barriers to the complex of liposomes with NA, including instability in biological fluids, interaction with serum proteins, plasma and nuclear membranes, and endosomal degradation. This review summarizes the results of research in recent years on the development of cationic liposomes that are effective in vitro and in vivo. Particular attention is paid to the individual structural elements of cationic liposomes that determine the transfection efficiency and cytotoxicity. The purpose of this review was to provide a theoretical justification of the most promising choice of cationic liposomes for the delivery of NAs into eukaryotic cells and study the effect of the composition of cationic lipids (CLs) on the transfection efficiency in vitro.

Results. As a result of the analysis of the related literature, it can be argued that one of the most promising delivery systems of NAs is CL based on cholesterol and spermine with the addition of a helper lipid DOPE. In addition, it was found that varying the composition of cationic liposomes, the ratio of CL to NA, or the size and zeta potential of liposomes has a significant effect on the transfection efficiency.

Conclusions. Further studies in this direction should include optimization of the conditions for obtaining cationic liposomes, taking into account the physicochemical properties and established laws. It is necessary to identify mechanisms that increase the efficiency of NA delivery in vitro by searching for optimal structures of cationic liposomes, determining the ratio of lipoplex components, and studying the delivery efficiency and properties of multicomponent liposomes.

About the Authors

A. A. Mikheev
Scientific Center “Signal”
Russian Federation

Aleksey A. Mikheev, Researcher, The 4th Research Department.

8, Bolshaya Olenya ul., Moscow, 107014



E. V. Shmendel
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Elena V. Shmendel, Cand. of Sci. (Chemistry), Associate Professor, N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies.

86, Vernadskogo pr., Moscow, 119571



E. S. Zhestovskaya
Scientific Center “Signal”
Russian Federation

Elizaveta S. Zhestovskaya, Researcher, The 1th Research and Analytical Department.

8, Bolshaya Olenya ul., Moscow, 107014



G. V. Nazarov
Scientific Center “Signal”
Russian Federation

Georgy V. Nazarov, Dr. of Sci. (Chemistry), Chief Researcher.

8, Bolshaya Olenya ul., Moscow, 107014



M. A. Maslov
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Mikhail A. Maslov, Dr. of Sci. (Chemistry), Director of the Institute of Fine Chemical Technologies, Professor at the N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies. Scopus Author ID 7003427092

86, Vernadskogo pr., Moscow, 119571



References

1. Ginn S.L., Alexander I.E., Edelstein M.L., Abedi M.R., Wixon J. Gene therapy clinical trials worldwide to 2012 – an update. J. Gene Med. 2013;15:65-77. https://doi.org/10.1002/jgm.2698

2. Verma I.M., Weitzman M.D. Gene Therapy: TwentyFirst Century Medicine. Annu. Rev. Biochem. 2005;74:711-738. https://doi.org/10.1146/annurev.biochem.74.050304.091637

3. Zhang X.-X., McIntosh T.J., Grinstaff M.W. Functional lipids and lipoplexes for improved gene delivery. Biochimie. 2012;94:42-58. https://doi.org/10.1016/j.biochi.2011.05.005

4. Elsabahy M., Nazarali A.M., Foldvari M. Nonviral nucleic acid delivery: key challenges and future directions. Curr. Drug Deliv. 2011;8:235-244. https://doi.org/10.2174/156720111795256174

5. Gao Y., Liu X.L., Li X.R. Research progress on siRNA delivery with nonviral carriers. Int. J. Nanomedicine. 2011;6:1017-1025. https://doi.org/10.2147/ijn.s17040

6. Guo J., Fisher K.A., Darcy R., Cryan J.F., O’Driscoll C. Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Mol. BioSyst. 2010;6:1143-1161. https://doi.org/10.1039/c001050m

7. Giacca M., Zacchigna S. Virus-mediated gene delivery for human gene therapy. J. Controlled Release. 2012;161(2):377-388. https://doi.org/10.1016/j.jconrel.2012.04.008

8. Crespo-Barreda A., Encabo-Berzosa M.M., GonzálezPastor R., Ortíz-Teba P., Iglesias M., Serrano J.L., Martin-Duque P. Viral and nonviral vectors for in vivo and ex vivo gene therapies. Translating Regenerative Medicine to the Clinic. 2016; 155-177. https://doi.org/10.1016/b978-0-12-800548-4.00011-5

9. Mertena O.-W., Gaillet B. Viral vectors for gene therapy and gene modification approaches. Biochem. Eng. J. 2016;108:98-115. https://doi.org/10.1016/j.bej.2015.09.005

10. Baum C., Kustikova O., Modlich U., Li Z., Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum. Gene Ther. 2006;17:253-263. https://doi.org/10.1089/hum.2006.17.253

11. Bessis N., GarciaCozar F.J., Boissier M.-C. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Therapy. 2004;11:10-17. https://doi.org/10.1038/sj.gt.3302364

12. Waehler R., Russell S.J., Curiel D.T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 2007;8:573-587. https://doi.org/10.1038/nrg2141

13. Thomas C.E., Ehrhardt A., Kay M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003;4:346-358. https://doi.org/10.1038/nrg1066

14. Lollo C.P., Banaszczyk M.G., Chiou H.C. Obstacles and advances in non-viral gene delivery. Curr. Opin. Mol. Ther. 2000;2(2):136-142.

15. Li S.O.-D., Huang L. Non-viral is superior to viral gene delivery. J. Controlled Release. 2007;123:181-183. https://doi.org/10.1016/j.jconrel.2007.09.004

16. Mintzer M.A., Simanek E.E. Nonviral vectors for gene delivery. Chem. Rev. 2009;109:259-302. https://doi.org/10.1021/cr800409e

17. Yin H., Kanasty R.L., Eltoukhy A.A., Vegas A.J., Dorkin J.R., Anderson D.J. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014;15(8):541-555. https://doi.org/10.1038/nrg3763

18. Vlerken L.E., Vyas T.K., Amiji M.M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res. 2007;2(8):1405-1414. https://doi.org/10.1007/s11095-007-9284-6

19. Balazs D.A., Godbey W.T. Liposomes for Use in Gene Delivery. J. Drug Deliv. 2011;2011:1-12. https://doi.org/10.1155/2011/326497

20. Kang S.H., Cho H.J., Shim G., Lee S., Kim S.H., Choi H.G., Kim C.W., Oh Y.K. Cationic liposomal co-delivery of small interfering RNA and a MEK inhibitor for enhanced anticancer efficacy. Pharm. Res. 2011;28:3069-3078. https://doi.org/10.1007/s11095-011-0569-4

21. Shim G., Han S.E., Yu Y.H, Lee S., Lee H.Y., Kim K., Kwon I.C., Park T.G, Kim Y.B., Choi Y.S., Kim C.-W., Oh Y.K. Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug. J. Controlled Release. 2011;155:60-66. https://doi.org/10.1016/j.jconrel.2010.10.017

22. Zuhorn I.S., Engberts J.B.F.N., Hoekstra D. Gene delivery by cationic lipid vectors: overcoming cellular barriers. Eur. Biophys. J. 2017;36(4-5):349-362. https://doi.org/10.1007/s00249-006-0092-4

23. Movahedi F., MS., Hu R.G., PhD., Becker D.L., PhD., Xu C., PhD. Stimuli-responsive liposomes for the delivery of nucleic acid therapeutics. Nanomedicine: Nanotechnology, Biology and Medicine. 2015;11(6):1575-1584. https://doi.org/10.1016/j.nano.2015.03.006

24. Monopoli M.P., Bombelli F.B., Dawson K.A. Nanoparticle coronas take shape. Nat. Nanotechnol. 2011;6:11-12. https://doi.org/10.1038/nnano.2011.267

25. Walczyk D., Bombelli F.B., Monopoli M.P., Lynch I., Dawson K.A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 2010;132:5761-5768. https://doi.org/10.1021/ja910675v

26. Allen L.T., Tosetto M., Miller I.S., O’Connor D.P., Penney S.C., Lynch I., Keenana A.K., Pennington S.R., Dawson K.A., Gallagher W.M. Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. Biomaterials. 2006;27:3096-3108. https://doi.org/10.1016/j.biomaterials.2006.01.019

27. Senior J.H. Fate and behavior of liposomes in vivo — a review of controlling factors. CRC Crit. Rev. Ther. Drug. 1987;3:123-193.

28. Monopoli M.P., Walczyk D., Campbell A., Elia G. Lynch I., Bombelli F.B., Dawson K.A. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011;133:2525-2534. https://doi.org/10.1021/ja107583h

29. Aggarwal P., Hall J.B., McLeland C.B., Dobrovolskaia M.A., McNeil S.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009;61:428-437. https://doi.org/10.1016/j.addr.2009.03.009

30. Ishida T. Harashima H., Kiwada H. Liposome clearance. Biosci. Rep. 2002;22(2):197-224. https://doi.org/10.1023/a:1020134521778

31. Chonn A., Cullis P.R., Devine D.V. The role of surface-charge in the activation of the classical and alternative pathways of complement by liposomes. J. Immunol. 1991;146:4234-4241.

32. Senior J., Gregoriadis G. Is half-life of circulating liposomes determined by changes in their permeability? FEBS Lett. 1982;145(1):109-114. https://doi.org/10.1016/0014-5793(82)81216-7

33. Judge A.D., Sood V., Shaw J.R., Fang D., McClintock K., MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 2005;23(4):457-462. https://doi.org/10.1038/nbt1081

34. Kleinman M.E., Yamada K., Takeda A., Chandrasekaran V., Nozaki M., Baffi J.Z., Albuquerque R.J.C., Yamasaki S., Itaya M., Pan Y.Z., Appukuttan B., Gibbs D., Yang Z.L., Kariko K., Ambati B.K., Wilgus T.A., DiPietro L.A., Sakurai E., Zhang K., Smith J.R., Taylor E.W., Ambati J. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008;452:591-597. https://doi.org/10.1038/nature06765

35. Robbins M., Judge A., Ambegia E., Choi C., Yaworski E., Palmer L., McClintock K., MacLachlan I. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum. Gene Ther. 2008;19:991-999. https://doi.org/10.1089/hum.2008.131

36. Kedmi R., Ben-Arie N., Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010;31:6867-6875. https://doi.org/10.1016/j.biomaterials.2010.05.027

37. Buyens K., Smedt S.C.D., Braeckmans K., Demeester J., Peeters L., Grunsven L.A.V., Mollerat du Jeu X.D., Sawant R., Torchilin V., Farkasova K., Ogris M., Sanders N.N. Liposome based systems for systemic siRNA delivery: Stability in blood sets the requirements for optimal carrier design. J. Controlled Release. 2012;158:362-370. https://doi.org/10.1016/j.jconrel.2011.10.009

38. Conner S.D., Schmid S.L. Regulated portals of entry into the cell. Nature. 2003;422:37-44. https://doi.org/10.1038/nature01451

39. Jones C.H., Chen C.-K., Ravikrishnan A., Rane S., Pfeifer B.A. Overcoming nonviral gene delivery barriers: perspective and future. Mol. Pharmaceutics. 2013;10:4082-4098. https://doi.org/10.1021/mp400467x

40. Rehman Z.U., Hoekstra D., Zuhorn I.S. On the mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ACS Nano. 2013;7(5):3767-3777. https://doi.org/10.1021/nn3049494

41. Ward C.M., Read M.L., Seymour L.W. Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood. 2001;97(8):2221-2229. https://doi.org/10.1182/blood.v97.8.2221

42. Van der Aa M.A., Mastrobattista E., Oosting R.S., Hennink W.E., Koning G.A., Crommelin D.J. The nuclear pore complex: the gateway to successful nonviral gene delivery. Pharm. Res. 2006;23(3):447-459. https://doi.org/10.1007/s11095-005-9445-4

43. Zhi D., Zhang S., Cui S., Zhao Y., Wang Y., Zhao D. The Headgroup evolution of cationic lipids for gene delivery. Bioconjugate Chem. 2013;24(4):487-519. https://doi.org/10.1021/bc300381s

44. Bottega R., Epand R.M. Inhibition of protein kinase C by cationic amphiphiles. Biochemistry. 1992;31:9025-9030. https://doi.org/10.1021/bi00152a045

45. Floch V., Loisel S., Guenin E., Herve A.C., Clement J.C., Yaouanc J.J., Abbayes H.D., Ferec C. Cation substitution in cationic phosphonolipids: a new concept to improve transfection activity and decrease cellular toxicity. J. Med. Chem. 2000;43:4617-4628. https://doi.org/10.1021/jm000006z

46. Ui-Tei1 K., Naito Y., Takahashi F., Haraguchi T., Ohki-Hamazaki H., Juni A., Ueda R., Saigo K. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Research. 2004;32(3):936-948. https://doi.org/10.1093/nar/gkh247

47. Rao G., Yadava P., Hughes J. Rationally designed synthetic vectors for gene delivery. The Open Drug Deliv. J. 2007;1:7-19. https://doi.org/10.2174/1874126600701010007

48. Choi J.S., Lee E.J., Jang H.S., Park J.S. New cationic liposomes for gene transfer into mammalian cells with high efficiency and low toxicity. Bioconjugate Chem. 2001;12:108-113. https://doi.org/10.1021/bc000081o

49. Liu D., Hu J., Qiao W., Li Z., Zhang S. Cheng L. Synthesis of carbamate-linked lipids for gene delivery. Bioorg. Med. Chem. Lett. 2005;15(12):3147-3150. https://doi.org/10.1016/j.bmcl.2005.04.010

50. Liu D., Qiao W., Li Z., Chen Y., Cui X., Li K., Yu L., Yan K., Zhu L., Guo Y. Cheng L. Structure–function relationship research of glycerol backbone-based cationic lipids for gene delivery. Chem. Biol. Drug Des. 2008;71:336-344. https://doi.org/10.1111/j.1747-0285.2008.00644.x

51. Tang F., Hughes J.A. Use of dithiodiglycolic acid as a tether for cationic lipids decreases the cytotoxicity and increases transgene expression of plasmid DNA in vitro. Bioconjugate Chem. 1999;10:791-796. https://doi.org/10.1021/bc990016i

52. Byk G., Wetzer B., Frederic M., Dubertret C., Pitard B., Jaslin G., Scherman D. Reduction-sensitive lipopolyamines as a novel nonviral gene delivery system for modulated release of DNA with improved transgene expression. J. Med. Chem. 2000;43:4377-4387. https://doi.org/10.1021/jm000284y

53. Reynier P., Briane D., Coudert R., Fadda G., Bouchemal N., Bissieres P., Taillandier, Cao A. Modifications in the head group and in the spacer of cholesterol-based cationic lipids promote transfection in melanoma B16-F10 cells and tumours. J. Drug Target. 2004;12(1):25-38. https://doi.org/10.1080/10611860410001683040

54. Muñoz-Úbeda M., Misra S. K., Barrán-Be A.L., Datta S., Aicart-Ramos C., Castro-Hartmann P., Kondaiah P., Junquera E., Bhattacharya S., Aicart E. How does the spacer length of cationic gemini lipids influence the lipoplex formation with plasmid DNA? Physicochemical and biochemical characterizations and their relevance in gene therapy. Biomacromolecules. 2012;13:3926-3937. https://doi.org/10.1021/bm301066w

55. Obata Y., Saito S., Takeda N., Takeoka S. Plasmid DNA-encapsulating liposomes: effect of a spacer between the cationic head group and hydrophobic moieties of the lipids on gene expression efficiency. Biochim. Biophys. Acta. 2009;1788:1148-1158. https://doi.org/10.1016/j.bbamem.2009.02.014

56. Du Z., Munye M.M, Tagalakis A.D., Manunta M.D.I., Hart S.L. The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Scientific Rep. 2015;4(7107):1-6. https://doi.org/10.1038/srep07107

57. Pisani M., Mobbili G. Bruni P. Neutral liposomes and DNA transfection. Non-Viral Gene Ther. 2011;319-348. https://doi.org/10.5772/21283

58. Zuhorn I.S., Bakowsky U., Polushkin E.,Visser W.H., Stuar M. Engberts J., Hoekstra D. Nonbilayer phase of lipoplex–membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol. Ther. 2005;11(5):801-810. https://doi.org/10.1016/j.ymthe.2004.12.018

59. Maslov M.A., Kabilova T.O., Petukhov I.A., Morozova N.G., Serebrennikova G.A., Vlassov V.V., Zenkova M.A. Novel cholesterol spermine conjugates provide efficient cellular delivery of plasmid DNA and small interfering RNA. J. Controlled Release. 2012;160:182-193. https://doi.org/10.1016/j.jconrel.2011.11.023

60. Mochizuki S., Kanegae N., Nishina K., Kamikawa Y., Koiwai K., Masunaga H., Sakurai K. The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim. Biophys. Acta. 2013;1828:412-418. https://doi.org/10.1016/j.bbamem.2012.10.017

61. Chesnoy S., Huang L. Structure and function of lipiddna complexes for gene delivery. Annu Rev. Biophys. Biomol. Struct. 2000;29:27-47. https://doi.org/10.1146/annurev.biophys.29.1.27

62. Cho S.M., Lee H.Y., Kim J.C. pH-dependent release property of dioleoylphosphatidyl ethanolamine liposomes. Korean J. Chem. Eng. 2008;25(2):390-393. https://doi.org/10.1007/s11814-008-0066-6

63. Zuidam N.J., Barenholz Y. Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery. Biochim. Biophys. Acta. 1998;1368:115-128. https://doi.org/10.1016/s0005-2736(97)00187-9

64. Fletcher S., Ahmad A. Perouzel E., Jorgensen M.R., Miller A.D. A dialkynoyl analogue of DOPE improves gene transfer of lower-charged, cationic lipoplexes. Org. Biomol. Chem. 2006;4:196-199. https://doi.org/10.1039/b514532e

65. Dabkowska A.P., Barlow D.J., Hughes A.V., Campbell R.A., Quinn P.J., Lawrence M.J. The effect of neutral helper lipids on the structure of cationic lipid monolayers. J. R. Soc. Interface. 2012;9:548-561. https://doi.org/10.1098/rsif.2011.0356

66. Pozzi D., Marchini C., Cardarelli F., Amenitsch H., Chiara Garulli C., Bifone A., Caracciolo G. Transfection efficiency boost of cholesterol-containing lipoplexes. Biochim. Biophys. Acta. 2012;1818:2335-2343. https://doi.org/10.1016/j.bbamem.2012.05.017

67. Yang S., Zheng Y., Chen J., Zhang Q., Zhao D., Han D., Chen X. Comprehensive study of cationic liposomes composed of DC-Chol and cholesterol with different mole ratios for gene transfection. Colloid. Surf., B: Biointerfaces. 2013;101:6-13. https://doi.org/10.1016/j.colsurfb.2012.05.032

68. Bae Y.-U., Huh J.-W, Kim B.-K., Parka H.Y., Seu Y.-B., Doh K.-O. Enhancement of liposome mediated gene transfer by adding cholesterol and cholesterol modulating drugs. Biochim. Biophys. Acta. 2016;1858:3017-3023. https://doi.org/10.1016/j.bbamem.2016.09.013

69. Duarte S., Faneca H., Pedroso de Lima M.C. Noncovalent association of folate to lipoplexes: A promising strategy to improve gene delivery in the presence of serum. J. Controlled Release. 2011;149:264-272. https://doi.org/10.1016/j.jconrel.2010.10.032

70. Metwally A.A., Blagbrough I. S. Quantitative silencing of EGFP reporter gene by self-assembled siRNA lipoplexes of LinOS and cholesterol. Mol. Pharmaceutics. 2012;9:3384-3395. https://doi.org/10.1021/mp300435x

71. Tao J., Ding W.-F., Che X.-H., Chen Y.-C., Chen F., Chen, X.-D. Ye X.-L., Xiong S.-B. Optimization of a cationic liposome-based gene delivery system for the application of miR-145 in anticancer therapeutics. Int. J. Mol. Med. 2016;37:1345-1354. https://doi.org/10.3892/ijmm.2016.2530

72. Cui S., Zhi D., Zhao Y., Chen H., Meng Y., Zhang C., Zhang S. Cationic lioposomes with folic acid as targeting ligand for gene delivery. Bioorg. Med. Сhem. Lett. 2016;26(16):40254029. https://doi.org/10.1016/j.bmcl.2016.06.085

73. Rao N.M. Cationic lipid-mediated nucleic acid delivery: beyond being cationic. Chem. Phys. Lipids. 2010;163:245-252. https://doi.org/10.1016/j.chemphyslip.2010.01.001

74. Mevel M., Neveu C., Goncalves C., Yaouanc J.-J., Pichon C. Jaffres P.-A., Midoux P. Novel neutral imidazolelipophosphoramides for transfection assays. Chem. Commun. 2008;(27):3124-3126. https://doi.org/10.1039/b805226c

75. Bogdanenko E.V., Sviridov Yu.V., Moskovtsev A.A., Zhdanov R.I. Non-viral gene transfer in vivo in gene therapy. Voprosy meditsinskoi khimii = Issues of Medicinal Chemistry. 2000;46(3):226-245 (in Russ.).

76. Kulkarni P.R., Yadav J.D., Vaidya K.A. Liposomes: a novel drug delivery system. Int. J. Curr. Pharm. Res. 2010;3(2):10-18.

77. Goyal P., Goyal K., Kumar S.G., Singh A., Katare O.P., Mishra D.N. Liposomal drug delivery systems – Clinical applications. Acta Pharm. 2005;55:1-25.

78. Byk T., Haddada H., Vainchenker W., Louache F. Lipofectamine and related cationic lipids strongly improve adenoviral infection efficiency of primitive human hematopoietic cells. Hum. Gene Ther. 1998;9:2493-2502. https://doi.org/10.1089/hum.1998.9.17-2493

79. Masotti A., Mossa G, Cametti C., Ortaggi G., Bianco A., Grosso N.D., Malizia D., Esposito C. Comparison of different commercially available cationic liposome–DNA lipoplexes: Parameters influencing toxicity and transfection efficiency. Colloid. Surf., B: Biointerfaces. 2009;68:136-144. https://doi.org/10.1016/j.colsurfb.2008.09.017

80. Cardarelli F., Digiacomo L., Marchini C., Amici A., Salomone F., Fiume G., Rossetta A., Gratton E., Pozzi D., Caracciolo G. The intracellular trafficking mechanism of lipofectaminebased transfection reagents and its implication for gene delivery. Scientific Rep. 2016;6(25879). https://doi.org/10.1038/srep25879

81. Zhao M., Yang H., Jiang X., Zhou W., Zhu B., Zeng Y., Yao K., Ren C. Lipofectamine RNAiMAX: an efficient siRNA transfection reagent in human embryonic stem cells. Mol. Biotechnol. 2008;40:19-26. https://doi.org/10.1007/s12033-008-9043-x

82. Zuris J.A., Thompson D.B., Shu Y., Guilinger J.P., Bessen J.L., Hu J.H., Maeder M.L., Joung J.K., Chen Z.Y., Liu D.R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 2015; 33:73-80. https://doi.org/10.1038/nbt.3081

83. Cui S., Zhang S., Chen H., Wang B., Zhao Y., Zhi D. The mechanism of lipofectamine 2000 mediated transmembrane gene delivery. Engineering. 2012;5:172-175. https://doi.org/10.4236/eng.2012.410b045

84. Dalby B., Cates S., Harris A., Ohki E.C., Tilkins M.L., Price P.J., Ciccaronec V.C. Advanced transfection with lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods. 2004;33:95-103. https://doi.org/10.1016/j.ymeth.2003.11.023

85. Mo R.H., Zaro J.L., Ou J., H.J., Shen W.-C. Effects of lipofectamine 2000/siRNA complexes on autophagy in hepatoma cells. Mol. Biotechnol. 2012;51:1-8. https://doi.org/10.1007/s12033-011-9422-6

86. Markowitz D., Liu C., Gurpreet M., Cunning C., de Mollerat du Jeu X.J. In vivofectamine™-new non-viral delivery reagent for in vivo delivery of Stealth™ RNAi. Mol. Ther. 2009;17:391. https://doi.org/10.1016/s1525-0016(16)39386-8

87. Schlosser K., Taha M., Stewart D.J. Systematic assessment of strategies for lung-targeted delivery of microRNA mimics. Theranostics. 2018;8(5):1213-1226. https://doi.org/10.7150/thno.22912

88. Eadon M.T., Cheng Y.-H, Hato T., Benson E.A., Ipe J., Collins K.S., De Luca T., El-Achkar T.M., Bacallao R.L., Skaar T.D., Dagher P.C. In vivo siRNA delivery and rebound of renal LRP2 in mice. J. Drug. Deliv. 2017;2017:1-12. https://doi.org/10.1155/2017/4070793

89. Legendre J.Y., Szoka Jr F.C. Delivery of plasmid DNA into mammalian cell lines using pHsensitive liposomes: comparison with cationic liposomes. Pharm. Res. 1992;9(10):1235-1242. https://doi.org/10.1023/a:1015836829670

90. Wang H., Wang B., Zhang Z. H. Inhibition of corneal neovascularization by vascular endothelia growth inhibitor gene. Int. J. Ophthalmol. 2010;3(3):196-199. https://doi.org/10.3980/j.issn.2222-3959.2010.03.03

91. Barthel F., Remy J.S., Loeffler J.P., Behr J.P. Laboratory methods: Gene transfer optimization with lipospermine-coated DNA. DNA and Cell Biology. 1993;12(6):553-560. https://doi.org/10.1089/dna.1993.12.553

92. Staedel C., Remy J.S., Hua Z., Broker T.R., Chow L.T., Behr J.P. High-efficiency transfection of primary human keratinocytes with positively charged lipopolyamine: DNA complexes. J. Invest. Dermatol. 1994;102(5):768-772. https://doi.org/10.1111/1523-1747.ep12377673

93. Mahato R.I., Kawabata K., Takakura Y., Hashida M. In vivo disposition characteristics of plasmid DNA complexed-with cationic liposomes. J. Drug Target. 1995;3:149-157. https://doi.org/10.3109/10611869509059214

94. Mahato R.I., Kawabata K., Nomura T., Takakura Y., Hashida M. Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes. J. Pharm. Sci. 1995;84(11):1267-1271. https://doi.org/10.1002/jps.2600841102

95. Gebhart C.L., Kabanov A.V. Evaluation of polyplexes as gene transfer agents. J. Controlled Release. 2001;73:401-416. https://doi.org/10.1016/s0168-3659(01)00357-1

96. Ciccarone V., Anderson D., Jianqing Lan J., Schifferli K., Joel Jessee J. DMRIE-C Reagent for transfection of suspension cells and for RNA transfection. Focus. 1995;17(3):84-87.

97. Groth-Pedersen L., Aits S., Corcelle-Termeau E., Petersen N.H.T, Nylandsted J., Jaattela M. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells. Plos One. 2012;7(10):1-11. https://doi.org/10.1371/journal.pone.0045381

98. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J. Molecular Biology of the Cell. 3rd Edn. New York: Garland Publishing; 1994, 1361 p.

99. Cardarelli F., Pozzi D., Bifone A., Marchini C., Caracciolo G. Cholesterol-dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells. Mol. Pharmaceutics. 2012;9:334-340. https://doi.org/10.1021/mp200374e

100. Pozzi D., Marchini C., Cardarelli F., Salomone F., Coppola S., Montani M., Zabaleta M.E., Digman M.A., Gratton E., Colapicchioni V., Caracciolo G. Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: Interplay between nanostructure and composition. Biochim. Biophys. Acta. 2014;1838:957-967. https://doi.org/10.1016/j.bbamem.2013.11.014

101. Biswas J., Mishra S.K., Kondaiah P., Bhattacharya S. Syntheses, transfection efficacy and cell toxicity properties of novel cholesterol-based gemini lipids having hydroxyethyl head group. Org. Biomol. Chem. 2011;9:4600-4613. https://doi.org/10.1039/c0ob00940g

102. Ma C.-C., He Z.-Y., Xia S., Ren K., Hui L.-W., Qin H.-X., Tang M.-H., Zeng J., Song X.-R. α, ω-Cholesterol-functionalized low molecular weight polyethylene glycol as a novel modifier of cationic liposomes for gene delivery. Int. J. Mol. Sci. 2014;15:20339-20354. https://doi.org/10.3390/ijms151120339

103. Ju J., Huan M.-L., Wan N., Hou Y.-L., Ma X.-X., Jia Y.-Y., Li C., Zhou S.-Y., Zhang B.-L. Cholesterol derived cationic lipids as potential non-viral gene delivery vectors and their serum compatibility. Bioorg. Med. Сhem. Lett. 2016;26:2401-2407. https://doi.org/10.1016/j.bmcl.2016.04.007

104. Meers P., Hong K., Bentz J., Papahadjopoulos D. Spermine as a modulator of membrane fusion: interactions with acidic phospholipids. Biochemistry. 1986;25(11):3109-3118. https://doi.org/10.1021/bi00359a007

105. Patil S.P., Yi J.W., Bang E.-K., Jeon E.M. Kim B.H. Synthesis and efficient siRNA delivery of polyamine-conjugated cationic nucleoside lipids. Med. Chem. Commun. 2011;2(6):505-508. https://doi.org/10.1039/c1md00014d

106. Paecharoenchai O., Niyomtham N., Apirakaramwong A., Ngawhirunpat T., Rojanarata T., Yingyongnarongkul B.-E., Opanasopit P. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes. AAPS PharmSciTech. 2012;13(4):1302-1308. https://doi.org/10.1208/s12249-012-9857-5

107. Paecharoenchai O., Niyomtham N., Ngawhirunpat T., Rojanarata T., Yingyongnarongkul B.-E., Opanasopit P. Cationic niosomes composed of spermine-based cationic lipids mediate high gene transfection efficiency. J. Drug Target. 2012;20(9):783-792. https://doi.org/10.3109/1061186x.2012.716846

108. Metwally A.A., Reelfs O., Pourzand C., Blagbrough I.S. Efficient silencing of EGFP reporter gene with siRNA delivered by asymmetrical N<sup>4</sup> ,N<sup>9</sup> -diacyl spermines. Mol. Pharmaceutics. 2012;9(7):1862-1876. https://doi.org/10.1021/mp200429n

109. Metwally A.A., Pourzand C., Blagbrough I.S. Efficient gene silencing by self-assembled complexes of siRNA and symmetrical fatty acid amides of spermine. Pharmaceutics. 2011;3(2):125-140. https://doi.org/10.3390/pharmaceutics3020125

110. Niyomtham N., Apiratikul N., Suksen K., Opanasopit P., Yingyongnarongkul B.-E. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails. Bioorganic and Medicinal Chemistry Letters. 2015;25:496-503. https://doi.org/10.1016/j.bmcl.2014.12.043

111. Niyomtham N., Apiratikul N., Chanchang K., Opanasopit P., Yingyongnarongkul B.-E. Synergistic effect of cationic lipids with different polarheads, central core structures and hydrophobic tails on gene transfection efficiency. Biol. Pharm. Bull. 2014;37(9):15341542. https://doi.org/10.1248/bpb.b14-00349


Supplementary files

1. Various techniques for the delivery of nucleic acids into cells are described herein. Particularly, the use of cationic liposomes was evaluated in detail. Cationic liposomes typically consist of amphiphilic cationic lipids. Neutral helper lipids may be added to cationic liposomes to enhance the transfection efficiency. The review discusses the structures and efficiency of such compounds and commercially available transfection agents.
Subject
Type Research Instrument
View (594KB)    
Indexing metadata
2. This is to certify that the paper titled Cationic liposomes as delivery systems for nucleic acids. commissioned to Enago by Aleksey A. Mikheev, Elena V. Shmendel, Elizaveta S. Zhestovskaya, Georgy V. Nazarov, Mikhail A. Maslov has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc.
Subject CERTIFICATE OF EDITING
Type Other
View (409KB)    
Indexing metadata

Various techniques for the delivery of nucleic acids into cells are described herein. Particularly, the use of cationic liposomes was evaluated in detail. Cationic liposomes typically consist of amphiphilic cationic lipids. Neutral helper lipids may be added to cationic liposomes to enhance the transfection efficiency. The review discusses the structures and efficiency of such compounds and commercially available transfection agents.

Review

For citations:


Mikheev A.A., Shmendel E.V., Zhestovskaya E.S., Nazarov G.V., Maslov M.A. Сationic liposomes as delivery systems for nucleic acids. Fine Chemical Technologies. 2020;15(1):7-27. https://doi.org/10.32362/2410-6593-2020-15-1-7-27

Views: 1442


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)