Fine Chemical Technologies

Advanced search

Phase equilibria in 4-pentyloxybenzoic acid - long-chain n-alkane systems

Full Text:


Objective. The work’s objective is to develop methods for the thermodynamic modeling of systems of liquid crystal - organic solvent.

Methods. Four binary systems of nematic 4-pentyloxybenzoic acid (5OBA) with n-alkanes (hexadecane, octadecane, icosane, and docosane) were investigated via thermal analysis methods (differential thermal analysis, polarization microscopy, visual polythermal analysis, and the polytherm solubility method). The accuracy in determining phase transitions temperatures is within 0.3 K. To describe the phase equilibria, models based on the Hildebrand and Hansen solubility parameters were used. Hansen solubility parameters were estimated using the Stefanis scheme. Hildebrand solubility parameters, molar volumes, and vaporization enthalpies were calculated using a group contribution scheme.

Results. Phase equilibria in the systems of 5OBA with n-alkanes were studied. Four T-x diagrams were obtained by thermal analysis methods, coordinates of invariant points (eutectics and metatectics) were determined in the systems. A linear dependence of the metatectic coordinate (х1 is a fraction of 5OBA, mol. %) on the number of C atoms in the alkane (N) was established: x1 = -0.3131 x N + 85.467. Solubility polytherms of 5OBA with solvents of different polarity were obtained: n-alkanes (hexane, octane), cyclohexane, aromatic compounds (benzene, toluene, and o-xylene), chlorobenzene, ethyl acetate, acetone, 1,4-dioxane, alcohols (propan-2-ol, propan-1-ol, butan-1-ol), and acetonitrile. The dependence of 5OBA’s solubility on the difference in the solubility parameters of the components and the distance Ra was established.

Conclusions. The model for regular solutions based on solubility parameters allows us to calculate the solubility polytherms of mesogens and to select solvents for the purification of mesogens by the mass crystallization method. The best solubility of 4-pentyloxybenzoic acid at 298 K appears in chlorobenzene.

About the Authors

V. O. Seregin
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Vladimir O. Seregin - Postgraduate Student, Department of Physical Chemistry.

86, Vernadskogo pr., Moscow 119571

Competing Interests: not

S. M. Pestov
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Sergei M. Pestov - Dr of Sci. (Chemistry), Professor of the Ya.K. Syrkin Department of Physical Chemistry, Scopus Author ID: 6507847129; ResearcherID: G-9361-2017.

86, Vernadskogo pr., Moscow 119571

Competing Interests: not

R. M. Zubairov
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Rustam M. Zubairov – Student.

86, Vernadskogo pr., Moscow 119571

Competing Interests: not


1. History of the Physical Chemistry Department of the Moscow Institute of M.V. Lomonosov Fine Chemical Technologies. Vestnik MITHT. 2010;Special Issue:32-36 (in Russ).

2. Flid V.R. Natural Science Faculty is an youth with century traditions. Vestnik MITHT. 2010;Special Issue:44-63 (in Russ).

3. Pestov S. Physical properties of liquid crystals. Landolt-Boernstein. Numerical data and functional relationships in science and technology. New Series. V. VIII/5A. Berlin-Heidelberg: Springer; 2003. 498 p.

4. Tomilin M.G., Pestov S.M. Svoistva zhidkokristallicheskikh materialov (Properties of liquid crystalline materials). St. Petersburg: Polytechnika; 2005. 296 p. (in Russ.).

5. Molochko V.A., Pestov S.M. Fazovye ravnovesiya i termodinamika sistem s zhidkimi kristallami (Phase equilibrium and thermodynamics in systems with liquid crystals). Moscow: MITHT; 2003. 242 p. (in Russ.).

6. Mo J., Milleret G., Nagaraj M. Liquid crystal nanoparticles for commercial drug delivery. Liquid Crystals Rev. 2017;5(2):69-85.

7. Shibaev V.P., Bobrovsky A.Yu. Liquid crystalline polymers: Development trends and photocontrollable materials. Russ. Chem. Rev. 2017;86(11):1024-1072.

8. Musevic I. Liquid-crystal micro-photonics. Liquid Crystals Rev. 2016;4(1):1-34.

9. Pestov S.M., Tomilin M.G. Increasing the viewing angles in displays based on liquid crystals. Review. J. Optic. Technol. 2012;79(9):576-587.

10. Cham Q. Li. (Ed.) Nanoscience with liquid crystals. From self-organized nanostructures to applications. N.Y.: Springer; 2014. 420 p.

11. Belyaev V.V., Chilaya G.S. Liquid crystals in the beginning of the 21st century. Moscow: IIU MGOU; 2017. 142 p. ISBN 978-5-7017-2785-2 (in Russ.).

12. Belyaev V.V. LCD. The technology of nowadays and future. Chapter 2. New technologies in application of LCD. Elektronika: Nauka, tekhnologiya, biznes = Electronics: Science, Technology, Business. 2015;10:124-131 (in Russ.).

13. Pongali Sathya Prabu N., Madhu Mohan M.L.N. Thermal and dielectric investigations on supramolecular hydrogen bonded liquid crystals. Molecular Crystals and Liquid Crystals. 2012;569(1):72-91.

14. Petrov M., Katranchev B., Rafailov P.M. The unique physical properties of the hydrogen bonded in dimers liquid crystals. IOP Conf. Series: Journal of Physics. 2017;780:012012.

15. Subhasri P., Vasanthi T., Vijayakumar VN. Investigation on induced non-tilted smectic A* and thermochromic effect in tilted smectic C* phase of linear double hydrogen bonded ferroelectric liquid crystals. J. Korean Phys. Soc. 2019;74(4):368-373.

16. Amabilino D.B., Smith D.K., Steed J. W. Supramolecular materials. Chem. Soc. Rev. 2017; 46(9):2404-2420.

17. Chandrasekar G., Pongali Sathya Prabu N., Madhu Mohan M.L.N. Calorimetric investigations of hydrogen-bonded liquid crystal binary mixtures. J. Therm. Anal. Calorim. 2018;134(3):1799-1822.

18. Surekha M., Ashok Kumar A.V.N., Chalapathy P.V., Muniprasad M., Potukuchi D.M. Synthesis and phase transition characterization by polarized optical microscopy and differential scanning calorimetry in hydrogen bonded chiral liquid crystal series: M*SA:nOBAs. Molecular Crystals and Liquid Crystals. 2018;668(1):1-28.

19. Rajanandkumar R., Pongali Sathya Prabu N., Madhu Mohan M.L.N. Characterization of hydrogen bonded liquid crystals formed by suberic acid and alkyl benzoic acids. Molecular Crystals and Liquid Crystals. 2013;587(1):60-79.

20. Subhapriya P., Sadasivam K., Madhu Mohan M.L.N., Vijayanand P.S. Experimental and theoretical investigation of p-n alkoxybenzoic acid based liquid crystals - A DFT approach. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy. 2014;123:511-523.

21. Hart E., Lee G., Qian E., Jodray M., Barrera M., Fischer R., Che M., Liu Y., Zha O., Woods D., Acree W.E. Jr., Abraham M.H. Determination of Abraham model solute descriptors for 4-tert-butylbenzoic acid from experimental solubility data in organic monosolvents. Phys. & Chem. Liquids. 2018;57(4):445-452.

22. Reyes C.G., Baller J., Araki T., Lagerwall J.P.F. Isotropic-isotropic phase separation and spinodal decomposition in liquid crystal-solvent mixtures. Soft Matter. 2019;15:6044-6054.

23. Belyaev V.V., Grebenkin M.F., Lisetskii L.N. Influence of dimerization processes on the properties of mixtures alkylbenzene and alkylcyclohexane acids. J. Phys. Chem. 1988:62:3087-3088.

24. Nosikova L.A., Kochetov A.N., Kudryashova Z.A., Melnikov A.B., Churakov A.V., Kuzmina L.G. Molecular and crystal structure of the cocrystal of p-n-heptyloxybenzoic acid - p-n-hexyloxybenzoic acid, obtained in the system of mesomorphic acids. Crystallography Rep. 2018;63(6):909-915.

25. Bhagavath P, Mahabaleshwara S. Mesomorphism in binary mixtures of 4-((hexylimino)methyl) benzoic acid and 4-alkyloxybenzoic acids. J. Therm. Anal. Calorim. 2017;129(1)339-345.

26. Ilyin S., Konstantinov I. Rheological evidence for the existence of subphases in the liquid crystalline 4-n-alkoxybenzoic acids. Liquid Crystals. 2015;43(3):369-380.

27. Ermakov S.F., Myshkin N.K. Liquid-crystal nanomaterials. Tribology and applications. N.Y.: Springer, 2018. 267 p.

28. Armarego W.L.E., Chai C.L.L. Purification of laboratory chemicals. 5th ed. Amsterdam: Butterworth Heinemann, 2003. 609 p.

29. Acree W.E. Jr., Chickos J.S. Phase change enthalpies and entropies of liquid crystals. J. Phys. Chem. Ref. Data. 2006;35(3):1051-1330.

30. Lei Z., Chen B., Li C., Liu H. Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids. Chem. Rev. 2008;108(4):1419-1455.

31. Hansen C.M. (Ed.) Hansen Solubility Parameters. A User’s handbook. 2nd ed. Boca Raton: CRC Press; 2007. 544 p.

32. Stefanis E., Panayiotou C. Prediction of Hansen solubility parameters with a new group-contribution method. Int. J. Thermophys. 2008;29:568-585.



Supplementary files

1. Fig. 6. Solubility polytherms of 5OBA: – n-hexane, – n-octane, – cyclohexane, – benzene, – toluene, – propan-1-ol, – ethyl acetate.
Type Исследовательские инструменты
View (22KB)    
Indexing metadata


For citations:

Seregin V.O., Pestov S.M., Zubairov R.M. Phase equilibria in 4-pentyloxybenzoic acid - long-chain n-alkane systems. Fine Chemical Technologies. 2019;14(6):66-75.

Views: 371

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)