Preview

Fine Chemical Technologies

Advanced search

AMPEROMETRIC DETERMINATION OF PERRHENATE ANION USING A MICROSCOPIC INTERFACES BETWEEN TWO IMMISCIBLE ELECTROLYTE SOLUTIONS

https://doi.org/10.32362/2410-6593-2018-13-4-5-16

Full Text:

Abstract

Voltammetric responses associated with the simple reaction of perrhenate anions transfer across polarized micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) was investigated, and their sensing applications were demonstrated. The micro-ITIES array was formed at polyethylene terephthalate membranes containing a 196 microhole array of radius 10.0±0.1 μm using a femtosecond laser. The characteristics of perrhenate ions transfer at the water/2-nitrophenyloctyl ether interface were first investigated using cyclic voltammetry (CV). CV was used in the estimation of some of the perrhenate anions thermodynamic parameters, such as the formal transfer potential and the Gibbs transfer energy. The technique of alternating current stripping voltammetry (ACSV) was also utilized to improve the sensitivity of the perrhenate anion detection. Under optimized preconcentration and detection conditions, a limit of detection of 0.3 μM with a wide linear dynamic range extending from 1.0 to 100 μM was achieved. The effect of various potential interfering anions on the perrhenate sensor was also investigated and an excellent selectivity over SCN-, I-, NO3-, NO2-, CO32-, SO42-, MoO42-, WO42- and CH3COO- ions was also achieved. This enabled quantitative measurements of rhenium in some mineral raw samples and the data was also validated by comparing with inductively coupled plasma atomic emission spectroscopy.

About the Authors

L. Yu. Martynov
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Postgraduate Student, I.P. Alimarin Chair of Analytical Chemistry

86, Vernadskogo Pr., Moscow 119571, Russia



E. V. Lopatukhin
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Student, I.P. Alimarin Chair of Analytical Chemistry

86, Vernadskogo Pr., Moscow 119571, Russia



A. A. Astafyev
Semenov Institute of Chemical Physics of Russian Academy of Sciences
Russian Federation

Ph.D. (Phys. and Math.), Senior Researcher, Laboratory of Bio- and Nanophotonics

4, Bld. 1, Kosygina St., Moscow19991, Russia



A. M. Shakhov
Semenov Institute of Chemical Physics of Russian Academy of Sciences
Russian Federation

Ph.D. (Phys. and Math.), Junior Researcher, Laboratory of Bio- and Nanophotonics

4, Bld. 1, Kosygina St., Moscow19991, Russia



V. A. Nadtochenko
Semenov Institute of Chemical Physics of Russian Academy of Sciences
Russian Federation

D.Sc. (Chem.), Director

4, Bld. 1, Kosygina St., Moscow 19991, Russia



N. K. Zaitsev
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

D.Sc. (Chem.), Head of the Chair of Energy Technologies, Systems and Installations

86, Vernadskogo Pr., Moscow 119571, Russia



References

1. Emsley J. Rhenium. Nature's Building Blocks: An A–Z Guide to the Elements. Oxford University Press, England, UK, 2001. 699 p.

2. Palant A.A., Troshkina I.D., Chekmarev A.M. Metallurgy of Rhenium. Moscow: Nauka Publ., 2007. 298 p. (in Russ.).

3. Pritchard J., Ciftci A., Verhoeven E., Hensen J.M., Pidko E.A. Supported Pt-Re catalysts for the selective hydrogenation of methyl and ethyl esters to alcohols. Catal. Today. 2017; 279(1): 10-18.

4. Polyak D.E. U.S. Geological Survey, Mineral Commodity Summaries, Rhenium [Electronic resource] – https://minerals.usgs.gov/minerals/pubs/commodity/rhenium/index.html (accessed on 03/14/2018).

5. Greenwood N.N., Earnshaw A. Chemistry of the Elements. Moscow: BINOM Publ., 2015. 1277 p. (in Russ.).

6. Borisova L.V., Ryabukhin V.A., Bozhkov O.D., Tsvetkova Kh.Ts. Field determination of rhenium in plants using catalytic test methods with dimethyldithiooxamide and Sulfonitrazo P. J. Anal. Chem. 2010; 65(5): 535-541.

7. Evdokimova O.V., Pechishcheva N.V., Shunyaev K.Yu. UptoDate methods for the determination of rhenium. J. Anal. Chem. 2012; 67(9): 741-753.

8. Karadjov M., Velitchkova N., Veleva O., Velichkov S., Markov P., Daskalova N. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICPOES). Spectrochim. Acta B. 2016; 119(1): 76-82.

9. Li J., Zhong L., Tu X., Liang X., Xu J. Determination of rhenium content in molybdenite by ICP–MS after separation of the major matrix by solvent extraction with N-benzoyl-N-phenylhydroxalamine. Talanta. 2010; 81(1): 954-958.

10. Kolpakova N.A., Buinovsky A.S., Mel’nikova I.A. Determination of rhenium in gold-containing ores by X-ray fluorescence spectrometry. J. Anal. Chem. 2009; 64(2): 144-148.

11. Lenell B.A., Arai Y. Evaluation of perrhenate spectrophotometric methods in bicarbonate and nitrate media. Talanta. 2016; 150(1): 690-698.

12. Goltz L.G., Kolpakova N.A. Sorbtion concentration and determination of the perrenate ions by the stripping voltammetry in mineral raw materials. Izvestija Tomskogo politehnicheskogo universiteta (Proceedings of the Tomsk Polytechnic University). 2006; 309(6): 77-80. (in Russ.).

13. Kolpakova N.A., Goltz L.Z. Determination of rhenium in mineral raw materials by stripping voltammetry. J. Anal. Chem. 2007; 62(3): 377-381.

14. Oskina Y.A., Gorchakov E.V., Kolpakova N.A. Determination of rhenium by a voltammetric method. Fundamental'nye issledovanija (Fundamental Studies). 2013; 8: 687-691. (in Russ.).

15. Samec Z., Samcová E., Girault H.H. Ion amperometry at the interface between two immiscible electrolyte solutions in view of realizing the amperometric ion-selective electrode. Talanta. 2004; 63(1): 21-32.

16. Vallejo L.J., Ovejero J.M., Fernandez R.A., Dassie S.A. Simple ion transfer at liquid/liquid interfaces. Int. J. Electrochem. 2012; 2012: 1-34.

17. Campbell J.A., Girault H.H. Steady state current for ion transfer reactions at a micro liquid /liquid interface. J. Electroanal. Chem. 1989; 266(4): 465-469.

18. Herzog G., Beni V. Stripping voltammetry at micro-interface arrays: A review. Anal. Chimica Acta. 2013; 769(1): P. 10-21.

19. Liu S., Li Q., Shao Y. Electrochemistry at micro- and nanoscopic liquid/liquid interfaces. Chem. Soc. Rev. 2011; 40(5): 2236-2253.

20. Lee H.J., Beattie P.D., Seddon B.J., Osborne M.D., Girault H.H. Amperometric ion sensors based on laser-patterned composite polymer membranes. J. Electroanal. Chem. 1997; 440(1-2): 73-82.

21. Gattass R.R., Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photonics. 2008; 2: 219-225. http://dx.doi.org/10.1038/nphoton.2008.47

22. Josserand J., Morandini J., Lee H.J., Ferrigno R., Girault H.H. Finite element simulation of ion transfer reactions at a single micro-liquid liquid interface supported on a thin polymer film. J. Electroanal. Chem. 1999; 468(1): 42-52.

23. Strutwolf J., Scanlon M.D., Arrigan D.W.M. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays – simulations and experiments. Analyst. 2009; 134(1): 148-158.

24. Osborne M.D., Girault H.H. Amperometric detection of the ammonium ion by facilitated ion transfer across the interface between two immiscible electrolyte solutions. Electroanalysis. 1995; 7(5): 425-434.

25. Cacote M.H.M., Pereira C.M., Tomaszewski L., Girault H.H., Silva F. Ag+-transfer across the water/1,2-dichloroethane interface facilitated by complex formation with tetraphenylborate derivatives. Electrochim. Acta. 2004; 49(2): 263-270.

26. Saito Y. A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev. Polarogr. 1968; 15(1): 177-187.

27. Rulfs C.L., Elving P.J. Oxidation levels of rhenium. I. Polarographic and coulometric reduction of perrhenate. J. Am. Chem. Soc. 1951; 73(7): 3284-3286.

28. Reymond F., Chopineaux-Courtois V., Steyaert G., Bouchard G., Carrupt P.A., Testa B., Girault H.H. Ionic partition diagrams of ionisable drugs: pHlipophilicity profiles, transfer mechanisms and charge effects on salvation. J. Electroanal. Chem. 1999; 462(2): 235-250.

29. Wilke S., Zerihun T. Standard Gibbs energies of ion transfer across the water/2-nitrophenyl octyl ether interface. J. Electroanal. Chem. 2001; 515(1-2): 52-60.

30. Lam H.T., Pereira C.M., Roussel C., Carrupt P.A., Girault H.H. Immobilized pH gradient gel cell to study the pH dependence of drug lipophilicity. Anal. Chem. 2006; 78(5): 1503-1508.

31. Hundhammer B., Mueller C., Solomon T., Alemu H., Hassen H. Ion transfer across the water–odichlorobenzene interface. J. Electroanal. Chem. 1991; 319(1-2): 125-135.

32. Ribeiro J.A., Silva F., Pereira C.M. Electrochemical study of the anticancer drug daunorubicin at a water/oil interface: Drug lipophilicity and quantification. Anal. Chem. 2013; 85(3): 1582-1590.

33. Abraham M.H., Acree W.E. Jr., Liu X. Partition of neutral molecules and ions from water to o-nitrophenyl octyl ether and of neutral molecules from the gas phase to o-nitrophenyl octyl ether. J. Solution Chem. 2018; 47(2): 293-307.

34. Zazpe R., Hibert C., O’Brien J., Lanyon Y.H., Arrigan D.W.M. Ion-transfer voltammetry at silicon membrane-based arrays of micro-liquid–liquid interfaces. Lab Chip. 2007; 7(12): 1732-1737.

35. Martynov L.Yu., Mel’nikov A.P., Astaf’ev A.A., Zaitsev N.K. Voltammetric determination of perchlorate ion at a liquid–liquid microscopic interface. J. Anal. Chem. 2017; 72(9): 992-998.

36. Hossain Md.M., Lee S.H., Girault H.H., Devaud V., Lee H.J. Voltammetric studies of hexachromic anion transfer reactions across micro water/polyvinylchloride–2-nitrophenyloctylether gel interfaces for sensing applications. Electrochim. Acta. 2012; 82(1): 12-18.

37. Macca C., Wang J. Experimental procedures for the determination of amperometric selectivity coefficients. Anal. Chim. Acta. 1995; 303(2-3): 265-274.


For citation:


Martynov L.Yu., Lopatukhin E.V., Astafyev A.A., Shakhov A.M., Nadtochenko V.A., Zaitsev N.K. AMPEROMETRIC DETERMINATION OF PERRHENATE ANION USING A MICROSCOPIC INTERFACES BETWEEN TWO IMMISCIBLE ELECTROLYTE SOLUTIONS. Fine Chemical Technologies. 2018;13(4):5-16. https://doi.org/10.32362/2410-6593-2018-13-4-5-16

Views: 245


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)