Preview

Тонкие химические технологии

Расширенный поиск

ГИДРОТЕРМАЛЬНО-МИКРОВОЛНОВОЙ СИНТЕЗ НАНОКРИСТАЛЛИЧЕСКОГО MnO2 В ПРИСУТСТВИИ ГЕКСАМЕТИЛЕНТЕТРАМИНА

https://doi.org/10.32362/2410-6593-2018-13-2-56-63

Полный текст:

Аннотация

В статье рассмотрен нетрадиционный подход к синтезу различных полиморфных модификаций диоксида марганца, заключающийся в гидротермально-микроволновой обработке реакционной смеси, содержащей перманганат калия и гексаметилентетрамин. Подчеркнута актуальность работы, обусловленная такими свойствами MnO2, как каталитическая и фотокаталитическая активность, его применением в аккумуляторах, суперконденсаторах, в биохимических приложениях. Подробно проанализировано влияние температуры и продолжительности гидротермально-микроволновой обработки, pH среды и типа добавляемой кислоты на фазовый состав и морфологию диоксида марганца. Показано, что фазовый состав диоксида марганца в значительной степени определяется не только температурой, продолжительностью синтеза и pH среды, но и типом добавляемой в реакционную смесь кислоты - азотной или серной. В частности, присутствие серной кислоты, по-видимому, приводит к стабилизации α-MnO2. Отмечено, что тип используемой в ходе синтеза кислоты, а также другие условия синтеза не оказывают существенного влияния ни на форму, ни на размер частиц α-, γ- и δ-MnO2. Напротив, морфология β-MnO2 оказалась крайне чувствительной к условиям синтеза: в условиях продолжительной (24 ч) гидротермальной обработки реакционных смесей в диапазоне рН 0.5-1 происходит формирование однофазного пиролюзита, микроструктура которого определяется составом реакционной смеси.

Об авторах

О. М. Гайтко
Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук
Россия

младший научный сотрудник лаборатории синтеза функциональных материалов и переработки минерального сырья

ИОНХ РАН, Россия, 119991, Москва, Ленинский пр., 31



А. Е. Баранчиков
Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук; Московский государственный университет им. М.В. Ломоносова
Россия

кандидат химических наук, старший научный сотрудник лаборатории синтеза функциональных материалов и переработки минерального сырья

ИОНХ РАН, Россия, 119991, Москва, Ленинский пр., 31

научный сотрудник кафедры неорганической химии Химического факультета МГУ

119991, г. Москва, ГСП-1, Ленинские горы, д. 1, стр. 3



В. К. Иванов
Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук
Россия

доктор химических наук, член-корреспондент РАН, директор

ИОНХ РАН, Россия, 119991, Москва, Ленинский пр., 31



Список литературы

1. Fernandes J.B., Desai B.D., Dalal V.N.K. Manganese dioxide - a review of a battery chemical part I. Chemical syntheses and X-ray diffraction studies of manganese dioxides // J. Power Sources. 1985. V. 15(4). P. 209-237.

2. Albering J.H. Structural chemistry of manganese dioxide and related compounds. In: Handbook of Battery Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. P. 87-123.

3. Fritsch S., Post J.E., Navrotsky A. Energetics of low-temperature polymorphs of manganese dioxide and oxyhydroxide // Geochim.Cosmochim.Acta. 1997. V. 61(13). P. 2613-2616.

4. Chabre Y., Pannetier J. Structural and electrochemical properties of the proton / ?-MnO2system // Prog. Solid State Chem. 1995. V. 23(1). P. 1-130.

5. Moazzen E., Timofeeva E.V., Segre C.U. Controlled synthesis of MnO2 nanoparticles for aqueous battery cathodes: polymorphism-capacity correlation // J. Mater. Sci. 2017. V. 52(13). P. 8107-8118.

6. Poyraz A.S., Huang J., Cheng S., Wu L., Tong X., Zhu Y., Marschilok A.C., Takeuchi K.J., Takeuchi E.S. Tunnel structured ?-MnO2 with different tunnel cations (H+, K+, Ag+) as cathode materials in rechargeable lithium batteries: The role of tunnel cation on electrochemistry // J. Electrochem. Soc. 2017. V. 164(9). P. A1983-A1990.

7. Walanda D.K., Lawrance G.A., Donne S.W. Hydrothermal MnO2: Synthesis, structure, morphology and discharge performance // J. Power Sources. 2005. V. 139(1-2). P. 325-341.

8. Cheng F., Zhao J., Song W., Li C., Ma H., Chen J., Shen P. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries // Inorg. Chem. 2006. V. 45(5). P. 2038-2044.

9. Zhang R., Arthur T.S., Ling C., Mizuno F. Manganese dioxides as rechargeable magnesium battery cathode; Synthetic approach to understand magnesiation process // J. Power Sources. 2015. V. 282. P. 630-638.

10. Ghouri Z.K., Zahoor A., Barakat N.A.M., Alsoufi M.S., Bawazeer T.M., Mohamed A.F., Kim H.Y. The (2 ? 2) tunnels structured manganese dioxide nanorods with ? phase for lithium air batteries // Superlattices Microstruct. 2016. V. 90. P. 184-190.

11. Devaraj S., Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties // J. Phys. Chem. C. 2008. V. 112(11). P. 4406-4417.

12. Subramanian V., Zhu H., Wei B. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material // J. Power Sources. 2006. V. 159. P. 361-364.

13. Subramanian V., Zhu H., Vajtai R., Ajayan P.M., Wei B. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures // J. Phys. Chem. B. 2005. V. 109(43). P. 20207-20214.

14. Chu J., Lu D., Ma J., Wang M., Wang X., Xiong S. Controlled growth of MnO2 via a facile onestep hydrothermal method and their application in supercapacitors // Mater. Lett. 2017. V. 193. P. 263-265.

15. Wang Y., Liu H., Bao M., Li B., Su H., Wen Y., Wang F. Structural-controlled synthesis of manganese oxide nanostructures and their electrochemical properties // J. Alloys Compd. 2011. V. 509(33). P. 8306-8312.

16. Zhang X., Li B., Liu C., Chu Q., Liu F., Wang X., Chen H., Liu X. Rapid microwave-assisted hydrothermal synthesis of morphology-tuned MnO2 nanocrystals and their electrocatalytic activities for oxygen reduction // Mater. Res. Bull. 2013. V. 48(7). P. 2696-2701.

17. Selvakumar K., Senthil Kumar S.M., Thangamuthu R., Kruthika G., Murugan P. Development of shape-engineered ?-MnO2 materials as bi-functional catalysts for oxygen evolution reaction and oxygen reduction reaction in alkaline medium // Int. J. Hydrogen Energy. 2014. V. 39(36). P. 21024-21036.

18. Gao F., Tang X., Yi H., Chu C., Li N., Li J., Zhao S. In-situ DRIFTS for the mechanistic studies of NO oxidation over ?-MnO2, ?-MnO2 and ?-MnO2 catalysts // Chem. Eng. J. 2017. V. 322(2). P. 525-537.

19. Wang T., Chen S., Wang H., Liu Z., Wu Z. Inplasma catalytic degradation of toluene over different MnO2 polymorphs and study of reaction mechanism // Chinese J. Catal. 2017. V. 38(5). P. 793-804.

20. Zhou J., Qin L., Xiao W., Zeng C., Li N., Lv T., Zhu H. Oriented growth of layered-MnO2 nanosheets over ?-MnO2 nanotubes for enhanced room-temperature HCHO oxidation // Appl. Catal. B. 2017. V. 207. P. 233-243.

21. Nawaz F., Cao H., Xie Y., Xiao J., Chen Y., Ghazi Z.A. Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol // Chemosphere. 2017. V. 168. P. 1457-1466.

22. Cheng G., Yu L., He B., Sun M., Zhang B., Ye W., Lan B. Catalytic combustion of dimethyl ether over ?-MnO2 nanostructures with different morphologies // Appl. Surf. Sci. 2017. V. 409. P. 223-231.

23. Shu-Pei L., Li-Li F., Lin Q., Li-Li W., Xing-Yi Q. Chemical kinetics of disproportionation decomposition of tertbutyl hydroperoxide catalyzed by buserite-type manganese oxides // J. Inorg. Mater. 2016. V. 31(1). P. 14-20.

24. Fei J., Cui Y., Yan X., Qi W., Yang Y., Wang K., He Q., Li J.B. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment // Adv. Mater. 2008. V. 20(3). P. 452-456.

25. Kumar N., Sen A., Rajendran K., Rameshbabu R., Ragupathi J., Therese H.A., MaiyalaganT. Morphology and phase tuning of ?- and ?-MnO2 nanocacti evolved at varying modes of acid count for their well-coordinated energy storage and visible-light-driven photocatalytic behaviour // RSC Adv. 2017. V. 7(40). P. 25041-25053.

26. Yu C., Li G., Wei L., Fan Q., Shu Q., Yu J.C. Fabrication, characterization of ?-MnO2 microrod catalysts and their performance in rapid degradation of dyes of high concentration // Catal. Today. 2014. V. 224. P. 154-162.

27. Cheng G., Yu L., Lin T., Yang R., Sun M., Lan B., Yang L., Deng F. A facile one-pot hydrothermal synthesis of ?-MnO2 nanopincers and their catalytic degradation of methylene blue // J. Solid State Chem. 2014. V. 217. P. 57-63.

28. Cui H.J., Huang H.Z., Fu M.L., Yuan B.L., Pearl W. Facile synthesis and catalytic properties of single crystalline ?-MnO2 nanorods // Catal. Commun. 2011. V.1 2(14). P. 1339-1343.

29. Mehta A., Basu S. Controlled photocatalytic hydrolysis of nitriles to amides by mesoporous MnO2 nanoparticles fabricated by mixed surfactant mediated approach // J. Photochem. Photobiol. A. 2017. V. 343. P. 1-6.

30. Tolasz J., Stastny M., Stengl V. Graphene oxide - mesoporous ?-MnO2 nanocomposite as a novel destructive sorbent // Mater. Today Proc. 2016. V. 3(8). P. 2795-2806.

31. Chen M., Shu J., Wang Z., Ren C. Porous surface MnO2 microspheres as oxidase mimetics for colorimetric detection of sulfite // J. Porous Mater. 2017. V. 24(4). P. 973-977.

32. Weina X., Guanlin L., Chuanshen W., Hu C., Wang X. A novel ?-MnO2 micro/nanorod arrays directly grown on flexible carbon fiber fabric for highperformance enzymeless glucose sensing // Electrochim. Acta. 2017. V. 225. P. 121-128.

33. Shu Y., Xu J., Chen J., Xu Q., Xiao X., Jin D., Pang H., Hu X. Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets // Sensors Actuators B. 2017. V. 252. P. 72-78.

34. Qu Q., Zhang P., Wang B., Chen Y., Tian S., Wu Y., Holze R. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors // J. Phys. Chem. C. 2009. V. 113(31). P. 14020-14027.

35. Reddy R.N., Reddy R.G. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material // J. Power Sources. 2004. V. 132(1-2). P. 315-320.

36. Shinde P.A., Lokhande V.C., Ji T., Lokhande C.D. Facile synthesis of hierarchical mesoporous weirdslike morphological MnO2 thin films on carbon cloth for high performance supercapacitor application // J. Colloid Interface Sci. 2017. V. 498. P. 202-209.

37. Majumdar D., Bhattacharya S.K. Sonochemically synthesized hydroxy-functionalized graphene-MnO2 nanocomposite for supercapacitor applications // J. Appl. Electrochem. 2017. V. 47(7). P. 789-801.

38. Wang L., Ma W., Li Y., Cui H. Synthesis of ?-MnO2 with nanoflower-like architecture by a microwave-assisted hydrothermal method // J. Sol-Gel Sci. Technol. 2017. V. 82(1). P. 85-91.

39. Sharipov K.B., Yapryntsev A.D., Baranchikov A.E., Boytsova O.V., Kurzeev S.A., Ivanova O.S., Borilo L.P., Gil’mutdinov F.Z., Kozik V.V. Synthesis of manganese dioxide by homogeneous hydrolysis in the presence of melamine // Russ. J. Inorg. Chem. 2017. V. 62(2). P. 139-149.

40. Korotkov R.F., Baranchikov A.E., Boytsova O.V., Goldt A.E., Kurzeev S.A., Ivanov V.K. Selective hydrothermal microwave synthesis of various manganese dioxide polymorphs // Russ. J. Inorg. Chem. 2016. V. 61(2). P. 129-134.


Для цитирования:


Гайтко О.М., Баранчиков А.Е., Иванов В.К. ГИДРОТЕРМАЛЬНО-МИКРОВОЛНОВОЙ СИНТЕЗ НАНОКРИСТАЛЛИЧЕСКОГО MnO2 В ПРИСУТСТВИИ ГЕКСАМЕТИЛЕНТЕТРАМИНА. Тонкие химические технологии. 2018;13(2):56-63. https://doi.org/10.32362/2410-6593-2018-13-2-56-63

For citation:


Gaytko O.M., Baranchikov A.E., Ivanov V.K. MICROWAVE-HYDROTHERMAL HEXAMETHYLENETETRAMINE-MEDIATED SYNTHESIS OF NANOCRYSTALLINE MnO2. Fine Chemical Technologies. 2018;13(2):56-63. (In Russ.) https://doi.org/10.32362/2410-6593-2018-13-2-56-63

Просмотров: 82


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)