Fine Chemical Technologies

Advanced search


Full Text:


The article considers a non-conventional approach to the synthesis of various polymorphic modifications of manganese dioxide. The approach consists in hydrothermal microwave processing of a reaction mixture containing potassium permanganate and hexamethylenetetramine. We emphasize the relevance of the work due to such MnO2 properties as catalytic and photocatalytic activity, its application in accumulators, supercondensers and biochemistry. We report on the first detailed study on the role of temperature, synthesis duration and pH value on the phase composition and morphology of nanocrystalline MnO2. We show that the phase composition of manganese dioxide is largely determined not only by temperature, synthesis duration and pH value, but also by the acid added to the reaction mixture (nitric or sulphuric). In particular, the presence of sulfuric acid apparently results in α-MnO2 stabilization. It is noted that the type of the acid used in the course of the synthesis, as well as other synthesis conditions exercise no significant influence neither on the shape nor on the size of α-, γ- and δ-MnO2 particles. In contrast, the morphology of β-MnO2 turned out to be extremely sensitive to the synthesis conditions. Long (24 h) hydrothermal processing of reaction mixtures at рН 0.5-1 results in the formation of single-phase pyrolusite. The microstructure of the latter is determined by the reaction mixture composition.

About the Authors

O. M. Gaytko
Institute of Solid State Physics, RAS
Russian Federation

Junior Researcher, Laboratory for the Synthesis of Advanced Materials and Minerals Processing

IGIC RAS, 31, Leninsky prospect, Moscow 119991,Russia

A. E. Baranchikov
Institute of Solid State Physics, RAS; M.V. Lomonosov Moscow State University
Russian Federation

Ph.D. (Chemistry), Senior Researcher, Laboratory for the Synthesis of Advanced Materials and Minerals Processing

IGIC RAS, 31, Leninsky prospect, Moscow 119991, Russia

Researcher, Chemistry Department of MSU, Inorganic Chemistry Chair

Leninskie Gory 1 build. 3., 119991, GSP-1, Moscow, Russia

V. K. Ivanov
Institute of Solid State Physics, RAS
Russian Federation

Dr.Sc. (Chemistry), Corresponding Member of RAS, Director

IGIC RAS, 31, Leninsky prospect, Moscow 119991, Russia


1. Fernandes J.B., Desai B.D., Dalal V.N.K. Manganese dioxide – a review of a battery chemical part I. Chemical syntheses and X-ray diffraction studies of manganese dioxides // J. Power Sources. 1985. V. 15(4). P. 209–237.

2. Albering J.H. Structural chemistry of manganese dioxide and related compounds. In: Handbook of Battery Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. P. 87–123.

3. Fritsch S., Post J.E., Navrotsky A. Energetics of low-temperature polymorphs of manganese dioxide and oxyhydroxide // Geochim.Cosmochim.Acta. 1997. V. 61(13). P. 2613–2616.

4. Chabre Y., Pannetier J. Structural and electrochemical properties of the proton / γ-MnO2 system // Prog. Solid State Chem. 1995. V. 23(1). P. 1–130.

5. Moazzen E., Timofeeva E.V., Segre C.U. Controlled synthesis of MnO2 nanoparticles for aqueous battery cathodes: polymorphism–capacity correlation // J. Mater. Sci. 2017. V. 52(13). P. 8107–8118.

6. Poyraz A.S., Huang J., Cheng S., Wu L., Tong X., Zhu Y., Marschilok A.C., Takeuchi K.J., Takeuchi E.S. Tunnel structured α-MnO2 with different tunnel cations(H+, K+, Ag+) as cathode materials in rechargeable lithium batteries: The role of tunnel cation on electrochemistry // J. Electrochem. Soc. 2017. V. 164(9). P. A1983–A1990.

7. Walanda D.K., Lawrance G.A., Donne S.W. Hydrothermal MnO2: Synthesis, structure, morphology and discharge performance // J. Power Sources. 2005. V. 139(1–2). P. 325–341.

8. Cheng F., Zhao J., Song W., Li C., Ma H., Chen J., Shen P. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries // Inorg. Chem. 2006. V. 45(5). P. 2038–2044.

9. Zhang R., Arthur T.S., Ling C., Mizuno F. Manganese dioxides as rechargeable magnesium battery cathode; Synthetic approach to understand magnesiation process // J. Power Sources. 2015. V. 282. P. 630–638.

10. Ghouri Z.K., Zahoor A., Barakat N.A.M., Alsoufi M.S., Bawazeer T.M., Mohamed A.F., Kim H.Y. The (2 × 2) tunnels structured manganese dioxide nanorods with α phase for lithium air batteries // Superlattices Microstruct. 2016. V. 90. P. 184–190.

11. Devaraj S., Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties // J. Phys. Chem. C. 2008. V. 112(11). P. 4406–4417.

12. Subramanian V., Zhu H., Wei B. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material // J. Power Sources. 2006. V. 159. P. 361–364.

13. Subramanian V., Zhu H., Vajtai R., Ajayan P.M., Wei B. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures // J. Phys. Chem. B. 2005. V. 109(43). P. 20207–20214.

14. Chu J., Lu D., Ma J., Wang M., Wang X., Xiong S. Controlled growth of MnO2 via a facile onestep hydrothermal method and their application in supercapacitors // Mater. Lett. 2017. V. 193. P. 263–265.

15. Wang Y., Liu H., Bao M., Li B., Su H., Wen Y., Wang F. Structural-controlled synthesis of manganese oxide nanostructures and their electrochemical properties // J. Alloys Compd. 2011. V. 509(33). P. 8306–8312.

16. Zhang X., Li B., Liu C., Chu Q., Liu F., Wang X., Chen H., Liu X. Rapid microwave-assisted hydrothermal synthesis of morphology-tuned MnO2 nanocrystals and their electrocatalytic activities for oxygen reduction // Mater. Res. Bull. 2013. V. 48(7). P. 2696–2701.

17. Selvakumar K., Senthil Kumar S.M., Thangamuthu R., Kruthika G., Murugan P. Development of shape-engineered α-MnO2 materials as bi-functional catalysts for oxygen evolution reaction and oxygen reduction reaction in alkaline medium // Int. J. Hydrogen Energy. 2014. V. 39(36). P. 21024–21036.

18. Gao F., Tang X., Yi H., Chu C., Li N., Li J., Zhao S. In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts // Chem. Eng. J. 2017. V. 322(2). P. 525–537.

19. Wang T., Chen S., Wang H., Liu Z., Wu Z. Inplasma catalytic degradation of toluene over different MnO2 polymorphs and study of reaction mechanism // Chinese J. Catal. 2017. V. 38(5). P. 793–804.

20. Zhou J., Qin L., Xiao W., Zeng C., Li N., Lv T., Zhu H. Oriented growth of layered-MnO2 nanosheets over α-MnO2 nanotubes for enhanced room-temperature HCHO oxidation // Appl. Catal. B. 2017. V. 207. P. 233–243.

21. Nawaz F., Cao H., Xie Y., Xiao J., Chen Y., Ghazi Z.A. Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol // Chemosphere. 2017. V. 168. P. 1457–1466.

22. Cheng G., Yu L., He B., Sun M., Zhang B., Ye W., Lan B. Catalytic combustion of dimethyl ether over α-MnO2 nanostructures with different morphologies // Appl. Surf. Sci. 2017. V. 409. P. 223–231.

23. Shu-Pei L., Li-Li F., Lin Q., Li-Li W., Xing-Yi Q. Chemical kinetics of disproportionation decomposition of tertbutyl hydroperoxide catalyzed by buserite-type manganese oxides // J. Inorg. Mater. 2016. V. 31(1). P. 14–20.

24. Fei J., Cui Y., Yan X., Qi W., Yang Y., Wang K., He Q., Li J.B. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment // Adv. Mater. 2008. V. 20(3). P. 452–456.

25. Kumar N., Sen A., Rajendran K., Rameshbabu R., Ragupathi J., Therese H.A., MaiyalaganT. Morphology and phase tuning of α- and β-MnO2 nanocacti evolved at varying modes of acid count for their well-coordinated energy storage and visible-light-driven photocatalytic behaviour // RSC Adv. 2017. V. 7(40). P. 25041–25053.

26. Yu C., Li G., Wei L., Fan Q., Shu Q., Yu J.C. Fabrication, characterization of β-MnO2 microrod catalysts and their performance in rapid degradation of dyes of high concentration // Catal. Today. 2014. V. 224. P. 154–162.

27. Cheng G., Yu L., Lin T., Yang R., Sun M., Lan B., Yang L., Deng F. A facile one-pot hydrothermal synthesis of β-MnO2 nanopincers and their catalytic degradation of methylene blue // J. Solid State Chem. 2014. V. 217. P. 57–63.

28. Cui H.J., Huang H.Z., Fu M.L., Yuan B.L., Pearl W. Facile synthesis and catalytic properties of single crystalline β-MnO2 nanorods // Catal. Commun. 2011. V.1 2(14). P. 1339–1343.

29. Mehta A., Basu S. Controlled photocatalytic hydrolysis of nitriles to amides by mesoporous MnO2 nanoparticles fabricated by mixed surfactant mediated approach // J. Photochem. Photobiol. A. 2017. V. 343. P. 1–6.

30. Tolasz J., Šťastný M., Štengl V. Graphene oxide – mesoporous δ-MnO2 nanocomposite as a novel destructive sorbent // Mater. Today Proc. 2016. V. 3(8). P. 2795–2806.

31. Chen M., Shu J., Wang Z., Ren C. Porous surface MnO2 microspheres as oxidase mimetics for colorimetric detection of sulfite // J. Porous Mater. 2017. V. 24(4). P. 973–977.

32. Weina X., Guanlin L., Chuanshen W., Hu C., Wang X. A novel β-MnO2 micro/nanorod arrays directly grown on flexible carbon fiber fabric for highperformance enzymeless glucose sensing // Electrochim. Acta. 2017. V. 225. P. 121–128.

33. Shu Y., Xu J., Chen J., Xu Q., Xiao X., Jin D., Pang H., Hu X. Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets // Sensors Actuators B. 2017. V. 252. P. 72–78.

34. Qu Q., Zhang P., Wang B., Chen Y., Tian S., Wu Y., Holze R. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors // J. Phys. Chem. C. 2009. V. 113(31). P. 14020–14027.

35. Reddy R.N., Reddy R.G. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material // J. Power Sources. 2004. V. 132(1–2). P. 315–320.

36. Shinde P.A., Lokhande V.C., Ji T., Lokhande C.D. Facile synthesis of hierarchical mesoporous weirdslike morphological MnO2 thin films on carbon cloth for high performance supercapacitor application // J. Colloid Interface Sci. 2017. V. 498. P. 202–209.

37. Majumdar D., Bhattacharya S.K. Sonochemically synthesized hydroxy-functionalized graphene–MnO2 nanocomposite for supercapacitor applications // J. Appl. Electrochem. 2017. V. 47(7). P. 789–801.

38. Wang L., Ma W., Li Y., Cui H. Synthesis of δ-MnO2 with nanoflower-like architecture by a microwave-assisted hydrothermal method // J. Sol-Gel Sci. Technol. 2017. V. 82(1). P. 85–91.

39. Sharipov K.B., Yapryntsev A.D., Baranchikov A.E., Boytsova O.V., Kurzeev S.A., Ivanova O.S., Borilo L.P., Gil’mutdinov F.Z., Kozik V.V. Synthesis of manganese dioxide by homogeneous hydrolysis in the presence of melamine // Russ. J. Inorg. Chem. 2017. V. 62(2). P. 139–149.

40. Korotkov R.F., Baranchikov A.E., Boytsova O.V., Goldt A.E., Kurzeev S.A., Ivanov V.K. Selective hydrothermal microwave synthesis of various manganese dioxide polymorphs // Russ. J. Inorg. Chem. 2016. V. 61(2). P. 129–134.

For citation:

Gaytko O.M., Baranchikov A.E., Ivanov V.K. MICROWAVE-HYDROTHERMAL HEXAMETHYLENETETRAMINE-MEDIATED SYNTHESIS OF NANOCRYSTALLINE MnO2. Fine Chemical Technologies. 2018;13(2):56-63. (In Russ.)

Views: 132

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)