Preview

Fine Chemical Technologies

Advanced search

ETHANOL PRODUCTION FROM COCOYAM (Хanthosoma sagittifolium): APPLICATION OF THERMODYNAMIC-TOPOLOGICAL ANALYSIS

https://doi.org/10.32362/2410-6593-2018-13-2-40-50

Full Text:

Abstract

Cocoyam (Xanthosoma sagittifolium (L.) Schott) is a tropical plant of the family of Araceas. Nigeria, China and Ghana are the countries that currently own most of the world production of this plant. In Colombia, there are not extensive crops of this plant, but it is used for animal feeding mainly. The plant has an aerial part with a high content of protein (leaves) and a tuber with an average starch content about 25% w/w. Compared to others starchy raw materials, this is a high value. Due to this fact this first-generation starchy material could be considered as a possible feedstock for the production of ethanol. Process design must ensure that the most advanced concepts are applied at the design and processing stage for every raw material to ensure efficient and more sustainable processes. For this reason, thermodynamic-topological analysis was used for the design of the stage of the produced ethanol purification. This work presents the process of ethanol production using cocoyam tuber. The software Aspen Plus v8.6 (Aspen Technology, Inc., USA) was used for the techno-economic assessment, and the Waste Reduction Algorithm (WAR) of the Environmental Protection Agency of the EE.UU. (EPA) was used to measure the environmental performance. The obtained production cost was 1,6 USD per kilogram, and the environmental impact was very low. This is an excellent incentive to promote the application of this feedstock to obtain a feasible alternative for the production of ethanol. Additionally, the use of thermodynamic-topological analysis in the design stage of the purification stage of the process proved to be very useful and easily applied.

About the Authors

S. Serna-Loaiza
Institute of Biotechnology and Agroindustry, National University of Colombia
Colombia

Magister, Chair of Chemical Engineering, Institute of Biotechnology and Agroindustry

Instituto de Biotecnología y Agroindustria, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía Aeropuerto La Nubia, Manizales-Caldas, Colombia 170001



Yu. A. Pisarenko
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Dr.Sc. (Engineering), Professor of Chair of Basic Organic Synthesis

86, Vernadskogo Pr., Moscow 119571, Russia



C. A. Cardona
Institute of Biotechnology and Agroindustry, National University of Colombia
Russian Federation

Ph.D. (Engineering), Professor of Chair of Chemical Engineering, Institute of Biotechnology and Agroindustry

Instituto de Biotecnología y Agroindustria, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía Aeropuerto La Nubia, Manizales-Caldas, Colombia 170001



References

1. Giacometti D., León J. La agricultura amazónica caribeña in Cultivos marginados: otra perspectiva de 1492 // Hernández J. E., León J., Ed. Food and Agriculture Organization of the United Nations Documents, 1992. P. 191–333. (in Span.).

2. Oke O. L. Roots, tubers, plantains and bananas in human nutrition // Redhead J., FAO Corporate Document Repository, 1998. 24 p.

3. Onwueme I. C., Charles W. B. Tropical Root and Tuber Crops: Production, Perspectives and Future Prospects // Ed. Food and Agriculture Organization of the United Nations Documents, 1994. 126 p.

4. Gómez M. Acero Duarte L. E., Guía para el cultivo y aprovechamiento del bore Alocasia macrorrhiza (Linneo) Schott // Ed. Convenio Andrés Bello, 2002. 43 p. (in Span.).

5. United States Department of Agriculture. Germplasm Resources Information Network (GRIN). // http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?42090.

6. United States Potato Board. Handbook of Potatoes Goodness // http://www.potatogoodness.com/Content/pdf/PPNHandbook_Final.pdf.

7. Rojas Rivera M. A. Estudios de las características fisiológicas de la yuca // Undergraduate Thesis. Universidad Tecnológica De Pereira // http://recursosbiblioteca.utp.edu.co/tesisd/textoyanexos/633682R741.pdf

8. Zhang C., Han W., Jing X., Pu G., Wang C. Life cycle economic analysis of fuel ethanol derived from cassava in southwest China // Renew. and Sustain. Energy Rev. 2003. V. 7. P. 353–366.

9. Quintero J., Montoya M. I., Sánchez O. J., Giraldo O. H., Cardona C. Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case // Energy. 2008. V. 33. № 3. P. 385–399.

10. Jarboe L. R., Shanmugam K. T., Ingram L. O. Ethanol in Encyclopedia of Microbiology, Third // M. Schlaechter, Ed. Kidlington, Oxford, United Kingdom: Academic Press, 2009. P. 295–304.

11. Koizumi T. Biofuels and food security // Renew. and Sustain. Energy Rev. 2015. V. 52. P. 829–841.

12. Cardona C., Sánchez O. J., Gutiérrez Mosquera L. F. Process synthesis for fuel ethanol production // CRC Press, 2009. 415 p.

13. Quintero J. A., Moncada J., Cardona C. A. Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: A process simulation approach // Bioresour. Technol. 2013. V. 139. P. 300–307.

14. Botero Londoño J. M. Valor nutricional de forrajes arbustivos para cerdas adultas / J. M. Botero Londoño // Master Thesis. Universidad Nacional de Colombia. 2004. // http://www.bdigital.unal.edu.co/6587/1/julianmauricioboterolondono.2004.pdf. (in Span.).

15. Zarate Higuera A., Gallo L. A., Jiménez Arango F. Aprovechamiento del bore (Alocasia macrorrhiza) en la alimentación de cerdos en etapa de ceba para reducir costos de producción // Rev. Innovando en la U. 2011. V. 3. P. 115–119. (in Span.).

16. López F., Caicedo A., Alegría G. Evaluación de tres dietas con harina de hoja de bore (Alocasia macrorrhiza) en pollos de engorde // Rev. MVZ Córdoba. 2012. V. 17. №. 3. P. 3236–3242. (in Span.).

17. Giacometti D., León J. Yautía o malanga (Xanthosoma sagittifolium) in Cultivos marginados: otra perspectiva de 1492 // Hernández J. E., León J., Ed. Food and Agriculture Organization of the United Nations Documents, 1992. P. 253–258. (in Span.).

18. Gómez M. E. Una revisión sobre el Bore (Alocasia macrorrhiza) in Agroforestería para la producción animal en América Latina-II // Ed. Food and Agriculture Organization of the United Nations Documents, 2003, P. 203–212. (in Span.).

19. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. Phenol sulphuric acid method for total carbohydrate // Anal. Chem. 1956. V. 26. 350 p.

20. Krishnaveni S., Sadavisam S., Balasubramanian T. Phenol sulphuric acid method for total carbohydrate // Food Chem. 1984. V. 15. 229 p.

21. Virunanon C., Ouephanit C., Burapatana V., Chulalaksananukul W. Cassava pulp enzymatic hydrolysis process as a preliminary step in bio-production from waste starchy resources // J. Clean. Prod. 2013. V. 39. P. 273–279.

22. Cardona C. A., Sánchez C. A., Gutiérrez L. F. Análisis de la Estática en Procesos de Destilación Reactiva in Destilación Reactiva: Análisis y Diseño Básico, First // Ed. Universidad Nacional de Colombia, 2007. 375 p. (in Spain.).

23. Forero Hernández H. A. Practical application of thermodynamics in the optimal synthesis of chemical and biotechnological processes / H. A. Forero Hernández // Master Thesis. Universidad Nacional de Colombia. 2015. // http://www.bdigital.unal.edu.co/50244/1/1053801196.2015.pdf.

24. Pisarenko Y. A., Danilov R., Yu R., Serafimov L. A. Study of modes for the reactive distillation analysis of statics // Theor. Found. Chem. Eng. 1995. V. 29. №.

25. P. 612–621.

26. Stanley D., Bandara A., Fraser S., Chambers P. J., Stanley G. A. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae // J. Appl. Microbiol. 2010. V. 109. №. 1. P. 13–24.

27. Zhang Q., Wu D., Lin Y., Wang X., Kong H., Tanaka S. Substrate and product inhibition on yeast performance in ethanol fermentation // Energy and Fuels. 2015. V. 29. №. 2. P. 1019–1027.

28. Gutiérrez L. F., Sánchez Ó. J., Cardona C. A. Analysis and design of extractive fermentation processes using a novel short-cut method // Ind. Eng. Chem. Res. 2013. V. 52. №. 36. P. 12915–12926.

29. Taal M., Bulatov I., Klemeš J., Stehlík P. Cost estimation and energy price forecasts for economic evaluation of retrofit projects // Appl. Therm. Eng. 2003. V. 23. №. 14. P. 1819–1835.

30. Moncada J., El-Halwagi M. M., Cardona C. A. Techno-economic analysis for a sugarcane biorefinery: Colombian case // Bioresour. Technol. 2013. V. 135. P. 533–543.

31. Quintero J., Moncada J., Cardona C. Technoeconomic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach // Bioresour. Technol. 2013. V. 139. P. 300–307.

32. Sassner P., Galbe M., Zacchi G. Technoeconomic evaluation of bioethanol production from three different lignocellulosic materials // Biomass and Bioenergy. 2008. V. 32. №. 5. P. 422–430.

33. Revista Nueva Mineria y Energía, “NME, N.m.y.E. LyD considers risky the proposal of an energetic development based on shale gas // http://www.nuevamineria.com/revista/2013. (in Span.).

34. Young D., Scharp R., Cabezas H. The waste reduction (WAR) algorithm: Environmental impacts, energy consumption, and engineering economics // Waste Manag. 2000. V. 20. №. 8. P. 605–615.

35. Cabezas H., Bare J. C., Mallick S. K. Pollution prevention with chemical process simulators: The generalized waste reduction (WAR) algorithm – Full version // Comput. Chem. Eng. 1999. V. 23. №. 4–5, P. 623–634.

36. Young D., Cabezas H. Designing sustainable processes with simulation: The waste reduction (WAR) algorithm // Comput. Chem. Eng. 1999. V. 23. №. 10. P. 1477–1491.

37. Cardona C., Marulanda V., Young D. Analysis of the environmental impact of butylacetate process through the WAR algorithm // Chem. Eng. Sci. 2004. V. 59. №. 24. P. 5839–5845.

38. Seader D., Henley E. J., Separation Process Principles, Second, V. 1 // Ed. John Wiley & Sons, Inc. 2006. 821 p.

39. Esquivia M. B., Castaño H. I., Atehortua L., Acosta A., Mejía C. E. Producción de etanol a partir de yuca en condiciones de alta concentración de sólidos (VHG) // Rev. Colomb. Biotecnol. 2014. V. 16. №. 1. P. 1630 (in Span.).

40. Ingledew W. M. M., Lin Y. H., Ethanol from starch-based feedstocks in Comprehensive biotechnology, Second // Ed. Elsevier. 2011. P. 37–49.

41. Departamento Administrativo Nacional de Estadística (DANE). Censo de producción de yuca para uso industrial // https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/Censo_plantas_proces_yuca_uso_industrial2003.pdf.

42. Fedebiocombustibles, Precios de Biocombustibles en Colombia 2015. // http://www.fedebiocombustibles.com/estadistica-precios-titulo-Biodiesel.htm.

43. United States Environmental Protection Agency. Understanding Global Warming Potentials.// http://www3.epa.gov/climatechange/ghgemissions/gwps.html.


For citation:


Serna-Loaiza S., Pisarenko Yu.A., Cardona C.A. ETHANOL PRODUCTION FROM COCOYAM (Хanthosoma sagittifolium): APPLICATION OF THERMODYNAMIC-TOPOLOGICAL ANALYSIS. Fine Chemical Technologies. 2018;13(2):40-50. https://doi.org/10.32362/2410-6593-2018-13-2-40-50

Views: 148


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)