Preview

Fine Chemical Technologies

Advanced search

CONDUCTIVITY AT ALTERNATING CURRENT OF THIN FILMS OF POLYCHLOROPRENE FORMED IN ELECTRIC FIELD

https://doi.org/10.32362/2410-6593-2018-13-1-75-92

Full Text:

Abstract

The temperature dependences of conductivity at alternating current (a frequency of 1 kHz) were studied for thin polychloroprene films formed from a solution on metal electrodes having different polarities: anode, cathode and zero potential. It was found that the nature and form of the temperature dependence of the conductivity of the investigated polymer film depends on the method of sample formation. Temperature regions of maximum conductivity were detected. The realization of the heating cycle followed by the film cooling in a limited region between the electrodes under the action of an alternating electric field leads to an increase in the specific conductivity and a shift of the extreme values to the region of lower temperatures. This effect is manifested to the greatest extent for films formed at the cathode. The process of heating and subsequent cooling is of hysteresis nature both for permittivity and for the dielectric loss tangent. The dependence of dielectric loss tangent on permittivity in a rather wide temperature range is inversely proportional. During the analysis of temperature dependences the mechanism of conductivity was studied for polychloroprene thin films at direct and alternating current. The determined activation energies of the polymeric system conductivity change enable concluding that the mechanisms of electric conductivity at direct and alternating current are of similar nature. The extreme values of permittivity may be due to structural alterations in the process of heating. This is confirmed by the data on the temperature dependence of dielectric loss tangent. In order to explain conductivity at direct current a model of dipole traps is offered.

About the Author

N. N. Komova
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Docent, Ph.D. (Сhemistry), Associate Professor of the Chair of Physics and Technical Mechanics

86, Vernadskogo Pr., Moscow, 119571, Russia



References

1. Blythe T., Bloor D. Electrical properties of polymer. Cambridge University Press, 2005. 376 р.

2. Sazhin B.I., Lobanov L.N., Romanovskaya O.S. Electrical properties of polymers. Moscow: Khimiya Publ., 1970. 376 p. (in Russ.)

3. Sazhin B.N., Orlova T.P., Lobanov L.N. Investigation of the dielectric losses of polystyrene and some styrene copolymers in the glassy state // Vysokomolek. soyed. A. (Polymer Science. A). 1968. V. A10. № 8. P. 1921–1929. (in Russ.)

4. Komova N.N., Syrov Yu.V., Grigoryev M.A. Physical nature of the conductivity of ethylenepropylene copolymer filled with tin chloride // Vestnik MITHT (Fine Chemical Technologies). 2006. V. 1. № 8. P. 58–62. (in Russ.)

5. Komova N.N., Kapitonov V.M., Prokhorov A.I. Using the physical model for describing the self-consistent field conduction elastomer filled tin salts. / Deposited in VINITI 23.11.06. №1452-V. 2006. (in Russ.)

6. Komova N.N., Zaikov G.E. Investigation of the electrical conductivity of an ethylene-propylene copolymer filled with tin chloride // Teoreticheskiye osnovy khimicheskoy tekhnologii (Theoretical Foundations of Chemical Technology). 2007. V. 41. № 5. P. 562–565. (in Russ.)

7. Gul V.E., Shenfil L.Z. Electroconductive polymer compositions. Moscow: Nauka Publ., 1984. 240 p. (in Russ.)

8. Komova N.N., Zaikov G.E., Kapitonov V.M.., Prokhorov A.I. Analysis of modeling representation of polydisperse systems conductivity on example of salts filled elastomer // In: Progress in Chemical and Biochemical Physics, Kinetics and Thermodynamics. New York: Nova Science Publishers, Inc., 2007. P. 111–127.

9. Krylov V.K., Kolesnikov V.A., Tedoradze M.G., Komova N.N. Conductivity switching in thin polymer layers // Proceed. of the Seventh Annual Youth Conference IBCP RAS–VUZy (Institute for Biochemical Physics, Russian Academy of Sciences (RAS) – High Schools) "Biochemical Physics". November 12–14, 2007. P. 157–161. (in Russ.)

10. Komova N.N. Model representations of the electrical conductivity of systems consisting of polymers filled with a finely divided conductor // Proceed. of the All-Russian Scientific and Practical Conference "Mathematics, Informatics, Natural Science in Economics and Society". Moscow, Moscow University of Finance and Law, November 16–17, 2009. V. 2 P. 104–108. (in Russ.)

11. Garnier F. Conductive polymers // Uspekhi fizicheskikh nauk (Physics-Uspekhi). 1978. V. 157. Iss. 3. P. 513–527. (in Russ.)

12. Komova N.N, Kapitonov V.M., Barashkova I.I., Markov V.A. Effect of temperature on the conductivity of a composite polymer material containing a carbon filler / Materials of the X Int. Scientific and Practical Conference “Nainovite nauchni postizheniya – 2014” (“The Newest Scientific Achievements – 2014”). Sofia: "Byal Grad-BG" Ltd., 2014. V. 29. Chemistry and Chemical Technologies. Physics. P. 78–84. (in Russ.)

13. Komova N.N., Zibin D.I., Zaikov G.E. Thermodynamic aspects of the changes in the electrical conductivity of polyethylene filled carbon black / In: Pathways to Modern Physical Chemistry. An Engineering Approach witrh Multidisciplinary Applications / Ed. by R. Wolf, G.E. Zaikov, A.K. Haghi. Apply Academic Press, 2017. Chapter 20. P. 355–370.

14. Lachinov A.N., Kornilov V.M., Zagurenko T.G., Zherebov A.Yu. On the problem of high conductivity of non-conjugated polymers // Zhurnal teoreticheskoy i eksperimental'noy fiziki (Journal of Theoretical and Experimental Physics). 2006. V. 129. Iss. 4. P. 728–734. (in Russ.)

15. Gutman F. Organic semiconductors. Moscow: Energoatomizdat Publ., 1990. 257 p. (in Russ.)

16. Popova S.S., Denisov A.V., Ryabukhova T.O., Okisheva N.A. Effect of chemical modification on the electrical properties of the interphase boundary of a film cathode/film electrolyte // Kondensirovannyye sredy i mezhfaznyye granitsy (Condensed Media and Interface Boundaries). 2015. V. 17. № 4. P. 487–497. (in Russ.)

17. Bonch-Bruevich V.L., Kalashnikov S.G. Physics of semiconductors. Moscow: Nauka Publ., 1987. 678 p. (in Russ.)

18. Street G.B. Electronic structure and transport in the organic amorphous semiconductor polypyrrole / In: Handbook of Conducting Polymers. V. 1. / Ed. T.E. Scotheim. New York: Marcel Dekker, 1986. P. 265–278.

19. Traven V.F. Electronic structure and properties of organic molecules. Moscow: Khimiya Publ., 1989. 267 p. (in Russ.)

20. Krynichny V.I. The nature and dynamics of nonlinear excitations in conducting polymers. Heteroaromatic polymers // Uspekhi khimii (Advances in Chemistry). 1996. V. 65. № 6. P. 565–580. (in Russ.)

21. Shklovsky B.I., Efros A.L. The theory of flow and conductivity of highly inhomogeneous media. // Uspekhi fizicheskikh nauk (Physics-Uspekhi). 1975. V. 117. № 3. P. 401–435. (in Russ.)

22. Mott N.F., Davis E.A. Electronic processes in non-crystalline materials. Oxford University Press, 1978. 221 р.

23. Borsenberger P.M., Pautmeier L., Bassler H. Charge transport in disordered molecular solids // J. Chem.Phys. 1991. V. 94. P. 5447–5454.

24. Bryksin V.V., Dyakonov M.N., Muzhdaba V.M., Khanin S.D. Analysis of the nature of hopping conductivity with respect to the frequency dependence of the loss angle tangent // Fizika tverdogo tela (FTT) (Solid State Physics). 1981. V. 23. № 5. P. 1516–1519. (in Russ.)

25. Solodukha A.M. Features of hopping electrical conductivity in thin layers of tungsten trioxide.// Vestnik VGU. Seriya: Fizika. Matematika (Proceedings of Voronezh State University. Series: Physics. Mathematics). 2005. № 2. P. 70–76. (in Russ.)

26. Lee P.A., Nagaosa N., Wen X.-G. Doping a mott insulator: Physics of high-temperature superconductivity // Rev. Modern Physics. 2006. V. 78. № 1. Р. 17–85.

27. Timonov A.M., Vasilyeva A.M. Electron conductivity of polymeric compounds // Soros' Educational Journal. 2000. № 3. P. 33–39. (in Russ.)

28. Gong S., Zhu Z.H., Li Z. Electron tunnelling and hopping effects on the temperature coefficient of resistance of carbon nanotube/polymer nanocomposites // Phys. Chem. Chem. Phys . 2017. V. 19. P. 5113–5120.

29. Borsenberger P.M., Bassler H. The role of polar additives on charge transport in molecularly doped polymers // Phys. Status Solidi (B). 1992. V. 170. Iss. 1. P. 291–302 .

30. Efros A.L., Shklovskii B.I. Critical behaviour of conductivity and dielectric constant near the metalnon-metal transition threshold // Phys. Status Solidi (B). 1976. V. 76. P. 475–485.

31. Emin D. Aspects of the theory of smallpolarons in disordered materials / In: Electronic and Structural Properties of Amorphous Semiconductors / eds. P.G. LeComber, J. Mort . London: Academic Press, 1973. P. 261–328.

32. Tyurin A., De Filpo G., Cupelli D., Nicoletta F.P., Mashin A.,Chidichimo G. Particle size tuning in silver-polyacrylonitrile nanocomposites // Express Polym. Lett. 2010. V. 4. № 2. P. 71–78.

33. Psarras G.C., Tsangaris G.M., Psarras G.C., Kouloumbi N. Electric modulus and interfacial polarization in composite polymeric systems // J. Materials Sci. 1998. V. 33. № 8. P. 2027–2037.

34. Psarras G.C., Manolakaki E., Tsangaris G.M. Dielectric dispersion and ac conductivity in iron particles loaded polymer composites // Composites. Part A: Appl. Sci. & Manufact. 2003. V. 34. № 12. P. 1187–1198.

35. Psarras G.C. Hopping conductivity in polymer matrix–metal particles composites // Composites. Part A: Appl. Sci. & Manufact. 2006. V. 37. № 10. P. 1545–1553.

36. Dyre J.C. Universality of ac conduction in disordered solids // Reviews of Modern Physics. 2000. V. 72. № 3. P. 873–892.

37. Schrоder T.B., Dyre J.C. Scaling and universality of ac conduction in disordered solids // Phys. Rev. Lett. 2000.V. 84. № 2. P. 310–313.

38. Encyclopedia of polymers: in 3 vols. V. 3. Polyoxadiazoles. Moscow: Soviet Encyclopedia Publ., 1977. 1152 p.(in Russ.)

39. Volkenshtein M.V. Structure and physical properties of molecules. Moscow-Leningrad: Academy of Sciences of USSR Publ., 1955. 638 p. (in Russ.)

40. Sokolova L.V., Tatarinov G.A. On the issue of the difference in the structural organization of SKN and BNSC rubbers // Kauchuk i rezina. 2017. V. 76. № 5. P. 274–279. (in Russ.)

41. Kolesnikov V.A., Tedoradze M.G., Krylov V.K. Conductivity switching effect in thin layers of wideband polymers. // Proceed. of the VI Int. Scientific and Technical Conference INTERMATIC 2007. Moscow, MREA, 2007. P. 52–55. (in Russ.)

42. Lachinov A.N., Vorobyeva E.V. Electronics of thin layers of wide-band polymers // Uspekhi fizicheskikh nauk (Physics-Uspekhi). 2006. V. 176. № 12. P. 1249–1266. (in Russ.)

43. Skaldin O.A., Zherebov A.Yu., Lachinov A.N., Chuvyrov A.N., Delev V.A. Charge instability in thin films of organic semiconductors // Pis’ma v ZhETF (Letters to the Journal of Experimental and Theoretical Physics). 1990. V. 51. № 3. P. 141–144. (in Russ.)

44. Vannikov A.V., Tameev A.R., Kozlov A.A. Influence of orientational ordering of transport centers on electronic mobility in polymer films. // Vysokomolek. soyed. A (Polymer Science. A) 1998. V. 40. № 7. P. 1164–1168. (in Russ.)

45. Bartenev G.M., Barteneva A.G. Relaxation properties of polymers. Moscow: Khimiya Publ., 1992. 384 p. (in Russ.)


For citation:


Komova N.N. CONDUCTIVITY AT ALTERNATING CURRENT OF THIN FILMS OF POLYCHLOROPRENE FORMED IN ELECTRIC FIELD. Fine Chemical Technologies. 2018;13(1):75-92. (In Russ.) https://doi.org/10.32362/2410-6593-2018-13-1-75-92

Views: 158


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)