Preview

Fine Chemical Technologies

Advanced search

USING AN ACTIVATED COPPER MICROELECTRODE FOR VOLTAMMETRIC DETERMINATION OF ALCOHOLS

https://doi.org/10.32362/2410-6593-2018-13-1-22-32

Full Text:

Abstract

A method for fabricating a copper microdisk electrode of an original design based on 50 μm diameter wire sealed in borosilicate glass is described. The electrochemical properties of the copper microelectrode were studied by the method of steady-state voltammetry in a 2 M NaOH solution in the potential range from -1.1 to 0.8 V (versus saturated Ag/AgCl-electrode). In order to improve the electrochemical response a method for two-stage electrode activation based on a copper dissolution / redeposition procedure followed by polarization in an alkaline medium is suggested. Morphological and physico-chemical changes on copper surface after activation were examined by atomic force microscopy and X-ray photoelectron spectroscopy. After this procedure, the electrode showed a heterogeneous morphology with coarse texture and high roughness parameters, and a layer of catalytically active Cu(III) species was formed on copper surface. The best results were achieved with an activation time of 60 s and a polarization potential of -0.3 V. The effectiveness of the activation procedure was tested during the chronoamperometric determination of methanol, ethanol and ethylene glycol. Factors affecting the formation of the analytical signal of alcohols were studied, and optimal conditions of amperometric measurements were selected on their basis. Under optimal conditions, the metrological characteristics of the method were determined. The peak current response increases linearly with alcohols concentration over the range 0.01 - 0.45 M (0.04 - 3% v/v). The repeatability of the electrode response was evaluated as 3.8% (n = 10). The activated copper microelectrode was used for the determination of ethanol in pharmaceutical and other products.

About the Authors

L. Yu. Martynov
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Postgraduate Student, I.P. Alimarin Chair of Analytical Chemistry,

86, Vernadskogo Pr., Moscow 119571, Russia



T. V. Sitnikova
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Student, I.P. Alimarin Chair of Analytical Chemistry,

86, Vernadskogo Pr., Moscow 119571, Russia



M. A. Lazov
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Engineer, I.P. Alimarin Chair of Analytical Chemistry

86, Vernadskogo Pr., Moscow 119571, Russia



I. Yu. Lovchinovsky
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Ph.D. (Engineering), Associate Professor, I.P. Alimarin Chair of Analytical Chemistry,

86, Vernadskogo Pr., Moscow 119571, Russia



N. K. Zaitsev
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation
Dr.Sc. (Chemistry), Head of the Chair of Energy Technologies, Systems and Installations, 86, Vernadskogo Pr., Moscow 119571, Russia


References

1. Zhen X., Wang Y. An overview of methanol as an internal combustion engine fuel // Renew. Sustainable Energy Rev. 2015. V. 52. № 1. P. 477–493.

2. Mofijur M., Rasul M.G., Hyde J. Recent developments on internal combustion engine performance and emissions fuelled with biodieseldiesel-ethanol blends // Procedia Eng. 2015. V. 105. № 1. P. 658–664.

3. Xu S., Fan S., Yaob H., Wang Y., Lang X., Lv P., Fang S. The phase equilibria of multicomponent gas hydrate in methanol/ethylene glycol solution based formation water // J. Chem. Thermodyn. 2017. V. 104. № 1. P. 212–217.

4. Sasaki Y., Tagashira S., Murakami Y., Kai S. Spectrophotometric determination of the alcohol content of alcoholic drinks with bis(O,O′-dipropyldithiophosphato)nickel(II) // Analyt. Sci. 1993. V. 9. № 4. P. 483–486.

5. Wang M.-L., Choong Y.-M., Su N.-W., Lee M.- H. Liquid chromatographic determination of alcohols in food and beverages with indirect polarimetric detection using a β-cyclodextrin mobile phase // Anal. Chem. 2002. V. 18. № 8. P. 903–906.

6. Wang M.-L, Choong Y.-M., Su N.-W, Lee M.-H. A rapid method for determination of ethanol in alcoholic beverages using capillary gas chromatography // J. Food and Drug Analysis. 2003. V. 11. № 2. P. 133–140.

7. Pontes H., Pinho P.G., Casal S., Carmo H., Santos A., Magalhaes T. GC determination of acetone, acetaldehyde, ethanol, and methanol in biological matrices and cell culture // J. Chromatogr. Sci. 2009.V. 47. № 4. P. 272–278.

8. Gorb E.P., Zaitsev V.M., Samoylova E.V., Rybtsov E.V. Joint determination of impurities of ethylene glycol and methanol in DEG by method of gas chromatography // Gazovaya promyshlennost' (Gas Industry). 2006. V. 8. № 1. P. 83–84. (in Russ.).

9. Szostek B., Prickett K.B., Buck R.C. Determination of fluorotelomer alcohols by liquid chromatography/tandem mass spectrometry in water // Rapid Commun. Mass Spectrom. 2006. V. 20. № 19. Р. 2837–2844.

10. Duarte I.F., Barros A., Almeida C., Spraul M., Gil A.M. Multivariate analysis of NMR and FTIR data as a potential tool for the quality control of beer // J. Agricult. and Food Chem. 2004. V. 52. № 5. Р. 1031–1038.

11. Tetsuyuki T., Akio S., Tadao O. Fluorometric determination of ethanol in liquor samples by flowinjection analysis using an immobilized enzyme-reactor column with packing prepared by coupling alcohol oxidase and peroxidase onto chitosan beads // J. AOAC Int. 2001. V. 84. № 5. Р.1475–1483.

12. Williams M.B., Reese H.D. Colorimetric determination of ethyl alcohol // Anal. Chem. 1950. V. 22. № 12. Р. 1556–1561.

13. de Lima R.B., Varela H. Catalytic oxidation of ethanol on gold electrode in alkaline media // Gold Bulletin. 2008. V. 41. № 1. Р. 15–22.

14. Lourenco L.M., Stradiotto N.R. Determination of free glycerol in biodiesel at a platinum oxide surface using potential cycling technique // Talanta. 2009. V. 79. № 1. P. 92–96.

15. Caetano L.G., Takeuchi M., Santos A.L., de Oliveira M.F., Stradiotto N.R. Voltammetric determination of ethyl acetate in ethanol fuel using a Fe3+/Nafion®-coated glassy carbon electrode // Fuel. 2013. V. 106. № 1. P. 837–842.

16. Riyanto, Othman M.R., Salimon J. Analysis of ethanol using copper and nickel sheet electrodes by cyclic voltammetry // Malaysian J. Analyt. Sci. 2007. V. 11. № 2. P. 379–387.

17. Hu X., Wang J.A Simple route of modifying copper electrodes for the determination of methanol and ethylene glycol // J. Electroanalysis. 2012. V. 24. № 7. P. 1639–1645.

18. Pereira P.F., Sousa M.F., Munoz R.A., Richter E.M. Simultaneous determination of ethanol and methanol in fuel ethanol using cyclic voltammetry // Fuel. 2013. V. 103. № 1. P. 725–729.

19. Fleischmann M., Korinek K., Pletcher D. The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes // J. Chem. Soc. Perkin Trans. 1972. V. 2. № 1. P. 1396–1403.

20. Martynov L.Yu., Naumova A.O., Zaytsev N.K., Lovchinovsky I.Yu. The use of copper indicator electrodes in voltammetric analysis (a review) // Tonkie khimicheskie tekhnologii (Fine Chemical Technologies). 2016. V. 11. № 5. P. 26–41. (in Russ.).

21. Montenegro M.I., Queiros M.A., Daschbach J.L. Microelectrodes: Theory and Applications. Springer Verlag, 2013. V. 197. № 1. 497 p.

22. Budnikov G.K., Evtyugin G.A., Maistrenko V.N. Modified electrodes for voltammetry in chemistry, biology, and medicine. Moscow: BINOM Publ., 2010. 416 p. (in Russ.).

23. Davis J., Moorcroft M.J., Wilkins S.J., Compton R.G., Cardosi M.F. Electrochemical detection of nitrate at a copper modified electrode under the influence of ultrasound // Electroanalysis. 2000. V. 12. № 1. P. 1363–1367.

24. Gamboa J.C.M., Peña R.C., Paixão T.R.L.C., Bertotti M. A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples // Talanta. 2009. V. 80. № 2. P. 581–585.

25. Gamboa J.C.M., Peña R.C., Paixão T.R.L.C., Lima A.S., Bertotti M. Activated copper cathodes as sensors for nitrite analysis // Electroanalysis. 2010. V. 22. № 22. P. 2627–2632.

26. Gamboa J.C.M., Petri D.F.S., Benedetti T.M., Gonçales V.R., Bertotti M. Morphology, microstructure and electrocatalytic properties of activated copper surfaces // J. Braz. Chem. Soc. 2012. V. 23. № 1. P. 120–123.

27. Biesinger M.C., Laua L.W.M., Gerson A.R., Smart R.St.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn // Appl. Surface Sci. 2010. V. 257. № 7. P. 887–898.

28. Paixão T.R.L.C., Corbo D., Bertotti M. Amperometric determination of ethanol in beverages at copper electrodes in alkaline medium // Anal. Chim. Acta. 2002. V. 472. № 1-2. P. 123–131.

29. Mizokawa T., Fujimori A., Namatame H. Electronic structure of the local-singlet insulator NaCuOz // Phys. Rev. B. 1994. V. 49. № 11. P. 7193–7204.

30. Allan K., Campion A. X-ray photoemission spectroscopy study of LaCuO3 // Phys. Rev. B. 1990. V. 41. № 16. P. 11572–11575.


For citation:


Martynov L.Yu., Sitnikova T.V., Lazov M.A., Lovchinovsky I.Yu., Zaitsev N.K. USING AN ACTIVATED COPPER MICROELECTRODE FOR VOLTAMMETRIC DETERMINATION OF ALCOHOLS. Fine Chemical Technologies. 2018;13(1):22-32. (In Russ.) https://doi.org/10.32362/2410-6593-2018-13-1-22-32

Views: 144


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)