Fine Chemical Technologies

Advanced search


Full Text:


Basic knowledge of mankind so far relates to the description of electrons and atoms in the material in a state of equilibrium, where the behavior changes slowly over time. The electron diffraction with a high temporal and space resolution has opened the possibility of direct observation of the processes occurring in the transient state of the substance (molecular movie). Here it is necessary to provide a temporary resolution of the order of 100 fs, which corresponds to the transition of the system through the energy barrier of the potential surface, which describes the chemical reaction - the process of the breaking and the formation of new bonds between the interacting agents. Thus, the possibility of the investigation of the coherent nuclear dynamics of molecular systems and the condensed matter can be opened. In the past two decades, it has been possible to observe the nuclear motion in the temporal interval corresponding to the period of the nuclear oscillation. The observed coherent changes in the nuclear system at such temporal intervals determine the fundamental shift from the standard kinetics of chemical reactions to the dynamics of the phase trajectory of a single molecule, the molecular quantum state tomography.

About the Authors

A. A. Ischenko
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Dr.Sci. (Chemistry), Professor, Head of Alimarin Department of Analytical Chemistry

86, Vernadskogo pr., Moscow 119571, Russia

Y. I. Tarasov
Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Dr.Sci. (Phys.-Mathematics), Professor, Head of Department of Physics and Technical Mechanics,

86, Vernadskogo pr., Moscow 119571, Russia

L. Schäfer
University of Arkansas
Russian Federation

Professor, Department of Chemistry and Biochemistry

Fayetteville, AR, U.S.A., AR72701


1. Mark H., Wierl R. Uber Elektronenbeugung am einzelnen Molekul. Naturwissenschaften. 1930. V. 18, № 9. P. 205–205.

2. Mark H., Wierl R. Die experimentellen und theoretischen grundlagen der electronenbeugung. Berlin: Verlag von Gebruder Borntraeger, 1931.

3. Stereochemical applications of gas-phase electron diffraction. Part A. The electron diffraction technique: book / ed. Hargittai I., Hargittai M. VCH Publishers, 1988.

4. Stereochemical applications of gas-phase electron diffraction. Part B. Structural information for selected classes of compounds: book / ed. Hargittai I., Hargittai M. VCH, 1988.

5. Ischenko A.A. [et al.] A stroboscopical gaselectron diffraction method for the investigation of shortlived molecular species. Appl. Phys. B Photophysics Laser Chem. 1983. V. 32, № 3. P. 161–163.

6. Ischenko A.A. [et al.] The observation of electron diffraction from free radicals – products of the IR multiphoton dissociation of CF3I molecules by stroboscopic gas electron diffraction. Bull. Moscow Univ. Ser 2. Chem. 1985. V. 26, № 2. P. 140–143.

7. Ischenko A.A. [et al.] The study of shortlived intermediate species and structural kinetics of photoexcited molecules by stroboscopic electron diffraction. Interuniversity Collection of Scientific Papers. The Structure and Properties of Molecules. Ivanovo, 1988. P. 63–77.

8. Golubkov V.V. [et al.] New methods for the registration of the signal in gas electron diffraction. Izv. Akad. Nauk SSSR Ser. Fiz. 1983. V. 47. P. 1115–1121. (in Russ.).

9. Akhmanov A.S. [et al.] Pulsed picosecond electron source. VIII-th European Conference on Electron Microscopy. Budapest, September 1984. Abstracts. P. 61–62.

10. Akhmanov S.A. [et al.] Generation of the picosecond electron pulses of fast electrons in the EMR100 electron diffraction apparatus by photoemission in the laser field. Russ. J. Techn. Phys. Lett. 1985. V. 11, № 3. P. 157–161.

11. Rood A.P., Milledge J. Combined flashphotolysis and gas-phase electron-diffraction studies of small molecules. J. Chem. Soc. Faraday Trans. 2. 1984. V. 80, № 9. P. 1145–1153.

12. Williamson S., Mourou G., Li J.C.M. Timeresolved laser-induced phase transformation in aluminum: JOUR. Phys. Rev. Lett. American Physical Society, 1984. V. 52, № 26. P. 2364–2367.

13. Williamson J.C. [et al.] Ultrafast diffraction and molecular structure. Chem. Phys. Lett. 1992. V. 196, № 6. P. 529–534.

14. Williamson J.C. [et al.] Clocking transient chemical changes by ultrafast electron diffraction: JOUR. Nature. 1997. V. 386, № 6621. P. 159–162.

15. Williamson J.C., Zewail A.H. Ultrafast electron diffraction. 4. Molecular structures and coherent dynamics. J. Phys. Chem. 1994. V. 98, № 11. P. 2766–2781.

16. Weber P.M., Carpenter S.D., Lucza T. Reflectron design for femtosecond electron guns. Proc. SPIE 2521,Time-Resolved Electron and X-Ray Diffraction, 23 (September 1, 1995) / ed. Rentzepis P.M. 1995. № 2521. P. 23–30.

17. Srinivasan R. [[et al.]] Ultrafast electron diffraction (UED). A new development for the 4D determination of transient molecular structures. Helv. Chim. Acta. 2003. V. 86, № 6. P. 1761–1799.

18. Dantus M. [et al.] Ultrafast electron diffraction. 5. Experimental time resolution and applications. J. Phys. Chem. American Chemical Society, 1994. V. 98, № 11. P. 2782–2796.

19. Schelev M.Y. 500-fs photoelectron gun for time-resolved electron diffraction experiments. Opt. Eng. 1998. V. 37, № 8. P. 2249–2254.

20. Monastyrski M. [et al.] Dynamics of electron bunches in subpicosecond streak tubes. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 1999. V. 427, № 1-2. P. 225–229.

21. Time-resolved diffraction / ed. Helliwell J.R., Rentzepis P.M. Oxford Series on Synchrotron Radiation, No. 2, Clarendon Press, 1997. 454 p.

22. Ben-Nun M., Cao J., Wilson K.R. Ultrafast X-ray and electron diffraction: Theoretical considerations. J. Phys. Chem. A. 1997. V. 101, № 47. P. 8743–8761.

23. Ihee H. [et al.] From the cover: Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. Proc. Natl. Acad. Sci. 2005. V. 102, № 20. P. 7145–7150.

24. Ihee H. [et al.] Ultrafast X-ray scattering: structural dynamics from diatomic to protein molecules. Int. Rev. Phys. Chem. 2010. V. 29, № 3. P. 453–520.

25. Cammarata M. [et al.] Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering. Nat. Methods. 2008. V. 5, № 10. P. 881–886.

26. Kim T.K. [et al.] Spatiotemporal kinetics in solution studied by time-resolved X-Ray liquidography (solution scattering). ChemPhysChem. 2009. V. 10, № 12. P. 1958–1980.

27. Kim J. [et al.] Anisotropic picosecond X-ray solution scattering from photoselectively aligned protein molecules. J. Phys. Chem. Lett. 2011. V. 2, № 5. P. 350–356.

28. Kim T.W. [et al.] Protein structural dynamics of photoactive yellow protein in solution revealed by pump–probe X-ray solution scattering. J. Am. Chem. Soc. 2012. V. 134, № 6. P. 3145–3153.

29. Golubkov V.V. [et al.] Pulse-resonance signal method for the recording of signal in a stroboscopic electron microscopy. XII Vsesoyuz. Konf. po Elektronnoi Mikroskopii, Sumy, Oktyabr’ 1982. Tezisy Dokladov (XII All-Union Conf. on Electron Microscopy, Sumy, October 1982, Abstracts) (Moscow: Nauka). 1982. P. 62. (in Russ.).

30. Lobastov V.A., Srinivasan R., Zewail A.H. Fourdimensional ultrafast electron microscopy. Proc. Natl. Acad. Sci. U. S. A. 2005. V. 102, № 20. P. 7069–7073.

31. King W.E. [et al.] Ultrafast electron microscopy in materials science, biology, and chemistry. J. Appl. Phys. 2005. V. 97, № 11. P. 111101, 1–27.

32. Zewail A.H. 4D ultrafast electron diffraction, crystallography and microscopy. Annu. Rev. Phys. Chem. 2006. V. 57, № 1. P. 65–103.

33. Zewail A.H. Four-dimensional electron microscopy. Science (80-. ). 2010. V. 328, № 5975. P. 187–193.

34. Zewail A.H., Thomas J.M. 4D electron microscopy. Imaging in space and time. Imperial College Press, 2010. 360 p.

35. Ischenko A.A. [et al.] The stroboscopic gas electron diffraction method for investigation of timeresolved structural kinetics in photoexcitation processes. J. Mol. Struct. Elsevier, 1993. V. 300. P. 115–140.

36. Ewbank J.D., Schäfer L., Ischenko A.A. Structural and vibrational kinetics of photoexcitation processes using time resolved electron diffraction. J. Mol. Struct. 2000. V. 524, № 1. P. 1–49.

37. Sciaini G., Miller R.J.D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Reports Prog. Phys. 2011. V. 74, № 9. P. 096101 (1-36).

38. Ischenko A.A., Bagratashvili V.N., Avilov A.S. Methods for studying the coherent 4D structural dynamics of free molecules and condensed state of matter. Crystallogr. Reports. 2011. V. 56, № 5. P. 751.

39. Ischenko A.A., Schäfer L., Ewbank J.D. Structural kinetics by time-resolved gas electron diffraction: coherent nuclear dynamics in laser excited spatially anisotropic molecular ensembles. J. Mol. Struct. 1996. V. 376, № 1–3. P. 157–171.

40. Hastings J.B. [et al.] Ultrafast time-resolved electron diffraction with megavolt electron beams. Appl. Phys. Lett. 2006. V. 89, № 18. P. 184109.

41. Buchachenko A.L. Chemistry on the border of two centuries – achievements and prospects. Russ. Chem. Rev. 1999. V. 68, № 2. P. 85–102.

42. Ischenko A.A. [et al.] Ultrafast transmission electron microscopy. Fine Chem. Technol. 2017. V. 12, № 1. P. 5–25.

43. Ischenko A.A., Tarasov Y.I., Schäfer L. Structural dynamics of free molecules and condensed state of matter. Part I. Theory and experimental technique. Fine Chem. Technol. 2017. V. 12, № 2. P. 5–33.

44. Rudakov F.M.M. [et al.] Megavolt electron beams for ultrafast time-resolved electron diffraction. AIP Conference Proceedings / ed. M.D. Furnish, M. Elert, T.P. Russell C.T.W. AIP, 2006. V. 845. P. 1287–1292.

45. Kibble T.W.B. Refraction of Electron Beams by Intense Electromagnetic Waves. Phys. Rev. Lett. American Physical Society, 1966. V. 16, № 26. P. 1233–1233.

46. Friedberg E.C. DNA damage and repair. Nature. 2003. V. 421, № 6921. P. 436–440.

47. Crespo-Hernández C.E. [et al.] Ultrafast Excited-State Dynamics in Nucleic Acids. Chem. Rev. 2004. V. 104, № 4. P. 1977–2020.

48. Henry B.R., Kasha M. Radiationless molecular electronic transitions. Annu. Rev. Phys. Chem. 1968. V. 19, № 1. P. 161–192.

49. Robinson G.W., Frosch R.P. Electronic excitation transfer and relaxation. J. Chem. Phys. 1963. V. 38, № 5. P. 1187–1203.

50. Bixon M., Jortner J. Intramolecular Radiationless Transitions. J. Chem. Phys. 1968. V. 48, № 2. P. 715–726.

51. Yarkony D.R. Conical intersections: their description and consequences. Conical intersections: electronic structure, dynamics and spectroscopy / ed. Domcke W., Yarkony D.R., Koppel H. Singapore: World Scientific, 2004. P. 41–127.

52. Kistiakowsky G.B., Parmenter C.S. Effects of pressure on fluorescence and intersystem crossing in benzene vapor. J. Chem. Phys. 1965. V. 42, № 8. P. 2942–2948.

53. Ihee H. [et al.] Direct imaging of transient molecular structures with ultrafast diffraction. Science. American Association for the Advancement of Science, 2001. V. 291, № 5503. P. 458–462.

54. Callomon J.H., Parkin J.E., Lopez-Delgado R. Non-radiative relaxation of the excited à 1B2u state of benzene. Chem. Phys. Lett. 1972. V. 13, № 2. P. 125–131.

55. Lim E.C. Photophysics of gaseous aromatic molecules: excess vibrational energy dependence of radiationless processes. Advances in Photochemistry, Volume 23 / ed. Neckers D.C., Volman D.H., Von Bünau G. John Wiley & Sons, Inc., 1997. P. 165–211.

56. Srinivasan R. [et al.] Dark structures in molecular radiationless transitions determined by ultrafast diffraction. Science (80-. ). 2005. V. 307, № 5709. P. 558–563.

57. Zewail A.H. Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2000. V. 39, № 15. P. 2586–2631.

58. Wrighton M. Photochemistry of metal carbonyls. Chem. Rev. 1974. V. 74, № 4. P. 401–430.

59. Geoffroy G.L., Wrighton M.S. Organometallic photochemistry. New York: Academic Press, 1979.

60. Fuß W., Trushin S.A., Schmid W.E. Ultrafast photochemistry of metal carbonyls. Res. Chem. Intermed. 2001. V. 27, № 4–5. P. 447–457.

61. Bañares L. [et al.] Femtosecond photodissociation dynamics of Fe(CO)5 in the gas phase. Chem. Phys. Lett. 1997. V. 267, № 1–2. P. 141–148.

62. Zewail A.H. Femtochemistry. Past, present, and future. Pure Appl. Chem. 2000. V. 72, № 12. P. 2219–2231.

63. Poliakoff M., Turner J.J. The structure of [Fe(CO)4] – an important new chapter in a long-running story. Angew. Chemie Int. Ed. 2001. V. 40, № 15. P. 2809–2812.

64. Apostolova E.S., Tikhonov A.P., Sendyurev O.A. Studies of Fe2(CO)9 formation in the thermolysis of Fe(CO)5 using ab initio calculations of Fe(CO)5 and Fe(CO)4. Russ. J. Coord. Chem. 2002. V. 28, № 1. P. 38–45.

65. Trushin S.A. [et al.] Femtosecond dynamics of Fe(CO)5 photodissociation at 267 nm studied by transient ionization. J. Phys. Chem. A. 2000. V. 104, № 10. P. 1997–2006.

66. Shorokhov D., Park S.T., Zewail A.H. Ultrafast electron diffraction: Dynamical structures on complex energy landscapes. ChemPhysChem. 2005. V. 6, № 11. P. 2228–2250.

67. Portius P. [et al.] Unraveling the photochemistry of Fe(CO)5 in solution: Observation of Fe(CO)3 and the conversion between 3Fe(CO)4 and 1Fe(CO)4 (solvent). J. Am. Chem. Soc. 2004. V. 126, № 34. P. 10713–10720.

68. Ewens R.V.G., Lister M.W. The structure of iron pentacarbonyl, and of iron and cobalt carbonyl hydrides. Trans. Faraday Soc. 1939. V. 35. P. 681–691.

69. Donohue J., Caron A. The crystal structure of iron pentacarbonyl: Space group and refinement of the structure. Acta Crystallogr. 1964. V. 17, № 6. P. 663–667.

70. Davis M.I., Hanson H.P. Reply to bond lengths in iron pentacarbonyl. J. Phys. Chem. 1967. V. 71, № 3. P. 775–777.

71. Beagley B. [et al.] The molecular structure of Fe(CO)5 in the gas phase. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969. V. 25, № 4. P.737–744.

72. Beagley B., Schmidling D.G. A re-evaluation of the molecular structure of iron pentacarbonyl. J. Mol. Struct. 1974. V. 22, № 3. P. 466–468.

73. McClelland B.W. [et al.] Iron pentacarbonyl: Are the axial or the equatorial iron−carbon bonds longer in the gaseous molecule? Inorg. Chem. 2001. V. 40, № 6. P. 1358–1362.

74. Jang J.H. [et al.] Molecular structures and vibrational frequencies of iron carbonyls: Fe(CO)5, Fe2(CO)9, and Fe3(CO)12. J. Phys. Chem. A. 1998. V. 102, № 27. P. 5298–5304.

75. Pierloot K. The CASPT2 method in inorganic electronic spectroscopy: from ionic transition metal to covalent actinide complexes. Mol. Phys. 2003. V. 101, № 13. P. 2083–2094.

76. Radius U. [et al.] Is CO a special ligand in organometallic chemistry? Theoretical investigation of AB, Fe(CO)4AB, and Fe(AB)5 (AB = N2, CO, BF, SiO).Inorg. Chem. 1998. V. 37, № 5. P. 1080–1090.

77. Ihee H., Cao J., Zewail A.H. Ultrafast electron diffraction of transient [Fe(CO)4]: determination of molecular structure and reaction pathway. Angew. Chem.Int. Ed. Engl. 2001. V. 40, № 8. P. 1532–1536.

78. McKinlay R.G., Paterson M.J. The Jahn–Teller effect in binary transition metal carbonyl complexes. The Jahn–Teller effect: Fundametals and implications for physics and chemistry / ed. Köppel H., Yarkony D.R., Barentzen H. Heidelberg: Springer, 2009. P. 311–344.

79. Kim S.K., Pedersen S., Zewail A.H. Femtochemistry of organometallics: dynamics of metalmetal and metal-ligand bond cleavage in M2(CO)10. Chem. Phys. Lett. 1995. V. 233, № 5–6. P. 500–508.

80. Trushin S.A. [et al.] Femtosecond dynamics and vibrational coherence in gas-phase ultraviolet photodecomposition of Cr(CO)6. J. Phys. Chem. A. 1998. V. 102, № 23. P. 4129–4137.

81. Trushin S.A., Fuß W., Schmid W.E. Conical intersections, pseudorotation and coherent oscillations in ultrafast photodissociation of group-6 metal hexacarbonyls. Chem. Phys. 2000. V. 259, № 2–3. P. 313–330.

82. Turro N.J., Ramamurthy V., Scaiano J.C. Principles of molecular photochemistry: An introduction: book / ed. Turro N.J., Ramamurthy V., Scaiano J.C. Sausalito, CA: University Science Books, 2009. 495 p.

83. Roos B.O. [et al.] Multiconfigurational perturbation theory: Applications in electronic spectroscopy. Advances in chemical physics: New methods in computational quantum mechanics. Volume 93 / ed. Prigogine I., Rice S.A. 1996. P. 219–331.

84. Roos B.O. Multiconfigurational quantum chemistry. Theory and applications of computational chemistry: The first forty years. Elsevier, 2005. P. 725–764.

85. Worth G.A., Cederbaum L.S. Beyond BornOppenheimer: Molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 2004. V. 55, № 1. P. 127–158.

86. McKinlay R.G., Żurek J.M., Paterson M.J. Vibronic coupling in inorganic systems: Photochemistry, conical intersections, and the Jahn–Teller and pseudoJahn–Teller effects. Advances in Inorganic Chemistry. Theoretical and Computational Inorganic Chemistry. 2010. P. 351–390.

87. Jean Y., Marsden C.T. Molecular orbitals of transition metal complexes: book. OUP Oxford, 2005. 288 p.

88. Persson B.J., Roos B.O., Pierloot K. A theoretical study of the chemical bonding in M(CO)x (M = Cr, Fe, and Ni). J. Chem. Phys. 1994. V. 101, № 8. P. 6810–6821.

89. Pierloot K., Tsokos E., Vanquickenborne L.G. Optical spectra of Ni(CO)4 and Cr(CO)6 revisited. J. Phys. Chem. 1996. V. 100, № 41. P. 16545–16550.

90. Paterson M.J. [et al.] Non-adiabatic direct dynamics study of chromium hexacarbonyl photodissociation. J. Phys. Chem. A. 2002. V. 106, № 44. P. 10494–10504.

91. Worth G.A., Welch G., Paterson M.J.Wavepacket dynamics study of Cr(CO)5 after formation by

92. photodissociation: relaxation through an (E A) e Jahn–Teller conical intersection. Mol. Phys. 2006. V. 104, № 5–7. P. 1095–1105.

93. Leadbeater N. Enlightening organometallic chemistry: the photochemistry of Fe(CO)5 and the reaction chemistry of unsaturated iron carbonyl fragments. Coord. Chem. Rev. 1999. V. 188, № 1. P. 35–70.

94. Rubner O. [et al.] A CASSCF/MR-CCI study of the excited states of Fe(CO)5. Chem. Phys. Lett. 1999. V.302, № 5–6. P. 489–494.

95. Jackson R.L. Mechanisms of metal atom formation in the multiphoton dissociation of organometallic molecules. Acc. Chem. Res. 1992. V. 25, № 12. P. 581–586.

96. Longuet-Higgins H.C. The intersection of potential energy surfaces in polyatomic molecules. Proc. R. Soc. A Math. Phys. Eng. Sci. 1975. V. 344, № 1637. P. 147–156.

97. Manthe U., Köppel H. Dynamics on potential energy surfaces with a conical intersection: Adiabatic, intermediate, and diabatic behavior. J. Chem. Phys. 1990. V. 93, № 3. P. 1658–1669.

98. Ceulemans A., Vanquickenborne L.G. The epikernel principle. Stereochemistry and Bonding. Structure and Bonding, Vol 71. Berlin, Heidelberg: Springer, 1989. P. 125–159.

99. Bersuker I.B. [et al.] Pseudo Jahn–Teller origin of instability of molecular high-symmetry configurations: Novel numerical method and results. J. Chem. Phys. 2002. V. 117, № 23. P. 10478–10486.

100. Neumann von J., Wigner E.P. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Zeitschr. 1929. V. 30. P. 467–470.

101. Ihee H., Cao J., Zewail A. Ultrafast electron diffraction: structures in dissociation dynamics of Fe(CO)5.Chem. Phys. Lett. 1997. V. 281, № 1-3. P. 10–19.

102. Poliakoff M., Ceulemans A. IR laser induced isomerization of iron tetracarbonyl (Fe(CO)4): a unique example of the Jahn–Teller effect. J. Am. Chem. Soc. 1984. V. 106, № 1. P. 50–54.

103. Poliakoff M., Weitz E. Shedding light on organometallic reactions: the characterization of tetracarbonyliron (Fe(CO)4), a prototypical reaction intermediate. Acc. Chem. Res. 1987. V. 20, № 11. P. 408–414.

104. Demkov Y.N., Kurasov P.B. Von NeumannWigner theorem: Level repulsion and degenerate eigenvalues. Theor. Math. Phys. 2007. V. 153, № 1. P. 1407–1422.

105. Guillaumont D., Vlček, A., Daniel C. Photoreactivity of Cr(CO)4 (2,2‘-bipyridine): Quantum chemistry and photodissociation dynamics. J. Phys. Chem. A. 2001. V. 105, № 7. P. 1107–1114.

106. Costa P.J. [et al.] Photochemistry of methyltrioxorhenium revisited: A DFT/TD-DFT and CASSCF/MS-CASPT2 theoretical study. Organometallics. 2006. V. 25, № 22. P. 5235–5241.

107. Ben Amor N. [et al.] Photodissociation dynamics of trimethyltin iodide. Chem. Phys. 2007. V. 338, № 2–3. P. 81–89.

108. Ryther R.J., Weitz E. Reaction kinetics of coordinatively unsaturated iron carbonyls formed on gasphase excimer laser photolysis of iron pentacarbonyl. J. Phys. Chem. 1991. V. 95, № 24. P. 9841–9852.

109. Ryther R.J., Weitz E. Diode laser probes of the product distribution of coordinatively unsaturated iron carbonyls produced following excimer laser photolysis of iron pentacarbonyl in the gas phase. J. Phys. Chem. 1992. V. 96, № 6. P. 2561–2567.

110. Laser spectroscopy of highly vibrationally excited molecules: book / ed. Letokhov V.S. Bristol: Adam Hilger, 1989. 396 p.

111. Lehmann K.K., Scoles G., Pate B.H. Intramolecular dynamics from eigenstate-resolved infrared spectra. Annu. Rev. Phys. Chem. 1994. V. 45, № 1. P. 241–274.

112. Nesbitt D.J., Field R.W. Vibrational energy flow in highly excited molecules: Role of intramolecular vibrational redistribution. J. Phys. Chem. 1996. V. 100, № 31. P. 12735–12756.

113. Makarov A.A., Malinovsky A.L., Ryabov E.A. Intramolecular vibrational redistribution: from high-resolution spectra to real-time dynamics. PhysicsUspekhi. 2012. V. 55, № 10. P. 977–1007.

114. Poydashev D.G. [et al.] Ultrafast dissociation dynamics of [Fe(CO)5]n clusters induced by femtosecond IR radiation. J. Phys. Chem. A. 2014. V. 118, № 47. P. 11177–11184.

115. Kompanets V.O. [et al.] Dynamics of photoprocesses induced by femtosecond infrared radiation in free molecules and clusters of iron pentacarbonyl. J. Exp. Theor. Phys. 2016. V. 122, № 4. P. 621–632.

116. Hicks R.G. What’s new in stable radical chemistry? Org. Biomol. Chem. 2007. V. 5, № 9. P. 1321–1338.

117. Griller D., Ingold K.U. Persistent carbon-centered radicals. Acc. Chem. Res. 1976. V. 9, № 1. P. 13–19.

118. Schäfer L. Electron diffraction studies of free radicals. I. Indenyl. J. Am. Chem. Soc. 1968. V. 90, № 15. P. 3919–3925.

119. Southern J.F. [et al.] Structural comparison of indene and indenyl using electron diffraction. J. Chem. Phys. 1971. V. 55, № 5. P. 2418–2421.

120. Bagratashvili V.N. [et al.] Isotopic selectivity of IR laser photodissociation of CF3 I molecules. Appl. Phys. 1979. V. 20, № 3. P. 231–235.

121. Borden W.T., Davidson E.R. Potential surfaces for the planar cyclopentadienyl radical and cation. J. Am. Chem. Soc. 1979. V. 101, № 14. P. 3771–3775.

122. Ha T.-K., Meyer R., Günthard H.H. Ab initio ci potential surface and vibronic states of the C5 H5 radical.Chem. Phys. Lett. 1980. V. 69, № 3. P. 510–513.

123. Pierloot K., Persson B.J., Roos B.O. Theoretical study of the chemical bonding in [Ni(C2H4)] and ferrocene. J. Phys. Chem. 1995. V. 99, № 11. P. 3465–3472.

124. Wang H., Brezinsky K. Computational study on the thermochemistry of cyclopentadiene derivatives and kinetics of cyclopentadienone thermal decomposition. J. Phys. Chem. A. 1998. V. 102, № 9. P. 1530–1541.

125. Bearpark M., Robb M., Yamamoto N. A CASSCF study of the cyclopentadienyl radical: conical intersections and the Jahn–Teller effect. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999. V. 55, № 3. P. 639–646.

126. Zhou X., Hrovat D.A., Borden W.T. Calculations of the effects of substituents on bond localization in annelated cyclopentadienyl radicals. J. Am. Chem. Soc. 2007. V. 129, № 35. P. 10785–10794.

127. Zeng T. [et al.] Effects of spin–orbit coupling on covalent bonding and the Jahn–Teller effect are revealed with the natural language of spinors. J. Chem. Theory Comput. 2011. V. 7, № 9. P. 2864–2875.

128. Zou W., Filatov M., Cremer D. Bondpseudorotation, Jahn–Teller, and pseudo-Jahn–Teller effects in the cyclopentadienyl cation and its pentahalogeno derivatives. Int. J. Quantum Chem. 2012. V. 112, № 20. P. 3277–3288.

129. Lo P.-K., Lau K.-C. High-level ab initio predictions for the ionization energy, electron affinity, and heats of formation of cyclopentadienyl radical, cation, and anion, C5H5/C5H5+/C5H5–. J. Phys. Chem. A. 2014. V. 118, № 13. P. 2498–2507.

130. Liebling G.R., McConnell H.M. Study of molecular orbital degeneracy in C5H5. J. Chem. Phys. 1965. V. 42, № 11. P. 3931–3934.

131. Yu L. [et al.] Rotationally resolved electronic spectrum of jet-cooled cyclopentadienyl radical. J. Phys. Chem. 1988. V. 92, № 15. P. 4263–4266.

132. Yu L. [et al.] High resolution laser spectroscopy of asymmetrically deuterated cyclopentadienyl radicals: A study of vibronic degeneracy resolution and Jahn–Teller distortion. J. Chem. Phys. 1993. V. 98, № 4.P. 2682–2698.

133. Korolev V.A., Nefedov O.M. Direct IR spectroscopic study of the cyclopentadienyl radical. Russ. Chem. Bull. 1993. V. 42, № 8. P. 1436–1437.

134. Ihee H. [et al.] Ultrafast electron diffraction of transient cyclopentadienyl radical: A dynamic pseudorotary structure. Chem. Phys. Lett. 2002. V. 353, № 5-6. P. 325–334.

135. Herzberg G. Molecular spectra and molecular structure. III. Electronic spectra and electronic structure of polyatomic molecules: book. Van Nostrand, 1966. 784 p.

136. Jahn H.A., Teller E. Stability of degenerate electronic states in polyatomic molecules. Phys. Rev. 1936. V. 49. P. 874–880.

137. Jahn H.A., Teller E. Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc. R. Soc. A Math. Phys. Eng. Sci. 1937. V. 161, № 905. P. 220–235.

138. Salem L. The molecular orbital theory of conjugated systems: book. W.A. Benjamin, 1966. 576 p.

139. Ohnishi S., Nitta I. ESR study of free radicals produced in irradiated cyclopentadiene and cyclohexene: The cyclopentadienyl and cyclohexenyl radicals. J. Chem. Phys. 1963. V. 39, № 11. P. 2848–2849.

140. Liehr A.D. Topological aspects of the conformational stability problem. Part I. Degenerate electronic states. J. Phys. Chem. 1963. V. 67, № 2. P. 389–471.

141. Carrington A. [et al.] Isotope effects in electron spin resonance: the negative ion of cyclo- octatetraene1-d. Mol. Phys. 1965. V. 9, № 2. P. 187–190.

142. Kira M., Watanabe M., Sakurai H. Chemistry of organosilicon compounds. 131. Substituent effects by deuterium and alkyl groups and carbon-13 hyperfine coupling constants of cyclopentadienyl radicals as studied by electron spin resonance. J. Am. Chem. Soc. 1980. V. 102, № 16. P. 5202–5207.

143. Barker P.J., Davies A.G., Tse M.-W. The photolysis of cyclopentadienyl compounds of tin and mercury. Electron spin resonance spectra and electronic configuration of the cyclopentadienyl, deuteriocyclopentadienyl, and alkylcyclopentadienyl radicals. J. Chem. Soc. Perkin Trans. 2. 1980. № 6. P. 941–948.

144. Yu L., Williamson J.M., Miller T.A. Rotationally resolved electronic spectrum of jet-cooled deuterated cyclopentadienyl radical. Chem. Phys. Lett. 1989. V. 162, № 6. P. 431–436.

145. Cullin D.W. [et al.] High-resolution spectroscopy of jet-cooled substituted cyclopentadienyl radicals. J. Phys. Chem. 1992. V. 96, № 1. P. 89–94.

146. Meyer R. [et al.] Jahn-teller effect in cyclopentadienyl radical: delocalized vibronic valence isomerisation. Chem. Phys. Lett. 1979. V. 66, № 1. P. 65–71.

147. Engleman Jr. R., Ramsay D.A. Electronic absorption spectrum of the cyclopentadienyl radical (C5H5) and its deuterated derivatives. Can. J. Phys. 1970. V. 48, № 8. P. 964–969.

148. Sun S., Bernstein E.R. Vibronic structure of the cyclopentadienyl radical and its nonrigid van der Waals cluster with nitrogen. J. Chem. Phys. 1995. V. 103, № 11. P. 4447–4454.

149. Almeida N.M.S., McKinlay R.G., Paterson M.J. Computation of excited states of transition metal complexes. Computational Studies in Organometallic Chemistry. Springer Verlag: Berlin, Heidelberg, 2014. P. 107–138.

150. Fossey J., Lefort D., Sorba J. Free radicals in organic chemistry. Wiley, 1995. 322 p.

151. Skell P.S., Tuleen D.L., Readio P.D. Stereochemical evidence of bridged radicals. J. Am. Chem. Soc. 1963. V. 85, № 18. P. 2849–2850.

152. Ihee H. [et al.] CF2XCF2X and CF2XCF2 • radicals (X = Cl, Br, I): ab initio and DFT studies and comparison with experiments. J. Phys. Chem. A. 2001. V. 105, № 14. P. 3623–3632.

153. Ihee H. [et al.] Ultrafast electron diffraction and structural dynamics: transient intermediates in the elimination reaction of C2F4I2. J. Phys. Chem. A. 2002. V. 106, № 16. P. 4087–4103.

154. Shorokhov D., Zewail A.H. 4D electron imaging: principles and perspectives. Phys. Chem. Chem. Phys. 2008. V. 10, № 20. P. 2879–2893.

155. Ihee H., Zewail A.H., Goddard W.A. Conformations and barriers of haloethyl radicals(CH2XCH2, X=F, Cl, Br, I): Ab initio studies. J. Phys. Chem. A. 1999. V. 103, № 33. P. 6638–6649.

156. Baskin J.S., Zewail A.H. Ultrafast electron diffraction: oriented molecular structures in space and time. ChemPhysChem. 2005. V. 6, № 11. P. 2261–2276.

157. Ischenko A.A., Ewbank J.D., Schäfer L. Structural and vibrational kinetics by time-resolved gas electron diffraction: stochastic approach to data analysis. J. Phys. Chem. 1995. V. 99, № 43. P. 15790–15797.

158. Ischenko A.A., Schäfer L., Ewbank J.D. Manifestation of chaotic nuclear dynamics of highly excited polyatomic molecules in time-resolved electron diffraction data. J. Phys. Chem. A. 1998. V. 102, № 37. P. 7329–7332.

159. Davisson C.J., Germer L.H. Reflection of electrons by a crystal of nickel: JOUR. Proc. Natl. Acad. Sci. U.S.A. 1928. V. 14, № 4. P. 317–322.

160. Thomson G.P., Reid A. Diffraction of cathode rays by a thin film. Nature. 1927. V. 119, № 3007. P. 890–890.

161. Dwyer J.R. [et al.] Femtosecond electron diffraction: “making the molecular movie”. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006. V. 364, № 1840. P. 741–778.

162. Ischenko A.A., Girichev G.V., Tarasov Y.I. Electron diffraction: structure and dynamics of free molecules and condensed matter. Moscow: FIZMATLIT, 2013. 616 p.

163. Dudek R.C., Weber P.M. Ultrafast diffraction imaging of the electrocyclic ring-opening reaction of 1,3-cyclohexadiene. J. Phys. Chem. A. American Chemical Society, 2001. V. 105, № 17. P. 4167–4171.

164. Siwick B.J. [et al.] An atomic-level view of melting using femtosecond electron diffraction. Science. American Association for the Advancement of Science, 2003. V. 302, № 5649. P. 1382–1385.

165. Ischenko A.A. [et al.] Structural and vibrational kinetics by stroboscopic gas electron diffraction: the 193 nm photodissociation of CS2. J. Phys. Chem. 1994. V. 98, № 35. P. 8673–8678.

166. Ischenko A.A., Schäfer L., Ewbank J. Timeresolved electron diffraction: a method to study the structural vibrational kinetics of photoexcited molecules. Timeresolved diffraction. Ch. 13 / ed. Helliwell J.R., Rentzepis P.M. Oxford University Press, 1997. P. 323–390.

167. Polanyi M., Wigner E. Über die Interferenz von Eigenschwingungen als Ursache von Energieschwankungen und chemischer Umsetzungen. Zeitschrift für Phys. Chemie. 1928. V. 139A, № 1. P. 439–451.

168. Evans M.G., Polanyi M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 1935. V. 31. P. 875–894.

169. Evans M.G., Polanyi M. Further considerations on the thermodynamics of chemical equilibria and reaction rates. Trans. Faraday Soc. 1936. V. 32. P. 1333–1360.

170. Evans M.G., Polanyi M. On the introduction of thermodynamic variables into reaction kinetics. Trans. Faraday Soc. 1937. V. 33. P. 448–452.

171. Arrhenius S. Zur Theorie der Chemischen Reaktionsgeschwindigkeit. Z. Phys. Chem. 1899. V. 28. P. 317–335.

172. Emmanuel N.M., Knorre D.G. Kurs khimicheskoi kinetiki (A course in chemical kinetics). Moscow: Higher School, 1984. 462p. (in Russ.).

173. Levine R.D. Chemical reaction dynamics. Looks to the understanding of complex systems. Chemistry for the 21st Century / ed. Keinan E., Schechter I. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2001. P. 209–218.

174. Levine R.D. Molecular reaction dynamics: book. Cambridge University Press, 2009. 555 p.

175. Lobastov V.A. [et al.] Instrumentation for timeresolved electron diffraction spanning the time domain from microseconds to picoseconds. Rev. Sci. Instrum. 1998. V. 69, № 7. P. 2633–2643.

176. Ischenko A.A. Molecular tomography of the quantum state by time-resolved electron diffraction. Phys. Res. Int. 2013. V. 2013. P. 1–8.

177. Ischenko A.A. The study of coherent dynamics of the nuclei by time-resolved electron diffraction. III. Molecular quantum state tomography. Russ. J. Chem. Chem. Technol. 2009. V. 52, № 9. P. 62–66.

178. Schäfer L. [et al.] Ultrafast electron crystallography and nanocrystallography: for chemistry, biology and material science. Part I. Ultrafast electron crystallography. Russ. J. Chem. Chem. Technol. 2017. V. 60, № 5. P. 3.

179. Schäfer L. [et al.] Ultrafast electron crystallography and nanocrystallography: for chemistry, biology and material science. Part II. Ultrafast electron nanocrystallography. Russ. J. Chem. Chem. Technol. 2017. V. 60, № 6. P. 3.

180. Shao H.-C., Starace A.F. Detecting electron motion in atoms and molecules. Phys. Rev. Lett. merican Physical Society, 2010. V. 105, № 26. P. 263201 (1-4).

181. Shao H.-C., Starace A., Madsen L. Ultrafast electron pulse (e,2e) processes. Bull. Am. Phys. Soc. 43rd Annu. Meet. APS Div. At. Mol. Opt. Phys. 2012. V. 57, № 5. P. Abstract: N3.00008.

182. Hensley C.J., Yang J., Centurion M. Imaging of isolated molecules with ultrafast electron pulses. Phys. Rev. Lett. 2012. V. 109, № 13. P. 133202.

For citation:


Views: 210

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)