Preview

Fine Chemical Technologies

Advanced search

Synthesis and properties of cyclic acetals of Wallach ketone

https://doi.org/10.32362/2410-6593-2025-20-5-474-482

EDN: PIYYFN

Abstract

Objectives. The work set out to obtain the corresponding cyclohexenyl derivatives of 1,4-dioxaspiro[4.5]decane, 1,5-dioxaspiro[5.5]undecane, and 1,4-dithiaspiro[4.5]decane by condensation of 2-(cyclohexen-1-yl)cyclohexanone (Wallach ketone) with 1,2-, 1,3-diols, and 1,2-ethanedithiol; to determine reaction duration and process temperature at which the maximum possible yield of the target cyclic derivatives of 2-(cyclohexen-1-yl)cyclohexanone is achieved; to evaluate the anticorrosive properties of the obtained acetals in an acidic medium; to carry out dichlorocarbenation using 1,4-dioxaspiro[4.5]decane as an example, and to establish the structure of the obtained isomers.

Methods. Target compounds including cyclic acetals were obtained by a classical organic synthesis method involving condensation of 2-(cyclohexen-1-yl)cyclohexanone (Wallach ketone) with 1,2-, 1,3-diols, and 1,2-ethanedithiol. The following analysis methods were used to determine the qualitative and quantitative composition of the reaction masses: gas–liquid chromatography (Crystallux-4000M chromatograph with a flame ionization detector, a 25 m × 0.33 mm capillary column containing 100% polydimethylsiloxane as a stationary phase 0.5 μm), nuclear magnetic resonance spectroscopy (BrukerAM-500 device with operating frequencies of 500 and 125 MHz), and elemental microanalysis (rapid gravimetry method). Chlorine and sulfur were determined by the Schöniger method.

Results. Under conditions of thermal heating of Wallach ketone with 1,2-, 1,3-diols, and 1,2-ethanedithiol, 1,4-dioxaspiro[4.5]decane, 1,5-dioxaspiro[5.5]undecane, and 1,4-dithiaspiro[4.5]decane were obtained with a yield of 95%. 5,5-Dimethyldioxane derivative was found to have a moderate inhibitory effect on acid corrosion of carbon steel St20 at a temperature of 60°С. Dichlorocarbenation of 1,4-dioxaspiro[4.5]decane was shown to occur with the formation of a mixture of two diastereomers (ratio is 1 : 2) as evidenced by doubled signals of carbon atoms in the carbon spectrum.

Conclusions. 2-(Cyclohexen-1-yl)cyclohexanone 1 condenses with 1,2-, 1,3-diols, and ethanedithiol to form the corresponding spirocyclic derivatives in high yields. It is shown that 1,4-dioxaspiro[4.5]decane undergoes dichlorocarbenation under Mąkosza reaction conditions to form polycyclic gem-dichlorocyclopropane as a mixture of two diastereomers. 7-(Сyclohex-1-en-1-yl)-3,3-dimethyl-1,5- dioxaspiro[5.5]undecane is confirmed to inhibit steel corrosion in acidic media.

About the Authors

B. V. Vazhenin
Ufa State Petroleum Technological University
Russian Federation

Bogdan V. Vazhenin, Laboratory Assistant, Youth Scientific Laboratory “Petrochemical Reagents, Oils and Materials for Thermal Power Engineering” 

1, Kosmonavtov ul., Ufa, 450064

ResearcherID LKO-1960-2024



A. A. Golovanov
Ufa State Petroleum Technological University
Russian Federation

Alexander A. Golovanov, Dr. Sci. (Chem.), Senior Researcher

1, Kosmonavtov ul., Ufa, 450064

Scopus Author ID 55651599300, ResearcherID I-4040-2017



Yu. G. Borisova
Ufa State Petroleum Technological University
Russian Federation

Yulianna G. Borisova, Cand. Sci. (Chem.), Associate Professor, Department of General, Analytical and Applied Chemistry

1, Kosmonavtov ul., Ufa, 450064

Scopus Author ID 56526865000, ResearcherID P-9744-2017



G. Z. Raskil’dina
Ufa State Petroleum Technological University
Russian Federation

Gul’nara Z. Raskil’dina, Dr. Sci. (Chem.), Professor, Department of General, Analytical and Applied Chemistry

1, Kosmonavtov ul., Ufa, 450064

Scopus Author ID 56069888400, ResearcherID F-1619-2017



S. S. Zlotskii
Ufa State Petroleum Technological University
Russian Federation

Simon S. Zlotskii, Dr. Sci. (Chem.), Professor, Head of the Department of General, Analytical and Applied Chemistry

1, Kosmonavtov ul., Ufa, 450064 

Scopus Author ID 6701508202, ResearcherID W-6564-2018



References

1. Raskil’dina G.Z., Sultanova R.M., Zlotskii S.S. gem-Dichlorocyclopropanes and 1,3-dioxacyclanes: synthesis based on petroleum products and use in low-tonnage chemistry. Rev. and Adv. in Chem. 2023;13(1):15–27. https://doi.org/10.1134/S2634827623700150

2. Sultanova R.M. Borisova Yu.G., Khusnutdinova N.S., et al. 1,3-Dioxacyclanes: synthesis based on petrochemicals, chemical transformations and applications. Russ. Chem. Bull. 2023;72(10):2297–2318. https://doi.org/10.1007/s11172-023-4027-3 [Original Russian Text: Sultanova R.M. Borisova Yu.G., Khusnutdinova N.S., Raskil’dina G.Z., Zlotskii S.S. 1,3-Dioxacyclanes: synthesis based on petrochemicals, chemical transformations and applications. Izvestiya Akademii nauk. Seriya khimicheskaya. 2023;72(10):2297–2318 (in Russ.). https://elibrary.ru/sudxha ]

3. Romero A., Santos A., Escrig D., Simon E. Comparative dehydrogenation of cyclohexanol to cyclohexanone with commercial copper catalysts: activity and impurities formed. Appl. Catal. A: Gen. 2011;392(1–2):19–27. https://doi.org/10.1016/j.apcata.2010.10.036

4. Raskil’dina G.Z., Sultanova R.M., Zlotsky S.S. Carbo- and heterocyclic platform compounds from petrochemical raw materials and their use in low-tonnage chemistry (review). Izvestiya Ufimskogo Nauchnogo tsentra RAN = Proceedings of the RAS Ufa Scientific Center. 2019;3:5–18 (in Russ.). https://doi.org/10.31040/2222-8349-2019-0-3-5-18

5. Sedrik R., Bonjour O., Laanesoo S., Liblikas I., Pehk T., Jannasch P., Vares L. Chemically Recyclable poly(β-thioether ester)s based on rigid spirocyclic ketal diols derived from citric acid. Biomacromolecules. 2022;23(6):2685–2696. https://doi.org/10.1021/acs.biomac.2c00452

6. Lorenzo D., Simón E., Santos A. Kinetic Model of Catalytic Self-Condensation of Cyclohexanone over Amberlyst 15. Ind. Eng. Chem. Res. 2014;53(49):19117–19127. https://doi.org/10.1021/ie5032265

7. Mahajan Y.S., Kamath R.S., Kumbhar P.S., Mahajani S.M. Self-condensation of cyclohexanone over ion exchange resin catalysts: kinetics and selectivity aspects. Ind. Eng. Chem. Res. 2008;47(1):25–33. https://doi.org/10.1021/ie061275b

8. Fisher W.B., VanPeppen J.F. Cyclohexanol and Cyclohexanone. In: Kirk-Othmer (Ed). Kirk-Othmer Encyclopedia of Chemical Technology: 4th ed. John Wiley & Sons, Inc.; 2004. P. 425–428. https://doi.org/10.1002/0471238961.0325031206091908.a01

9. ZhouS., ZouH., HuangG., ChenG., ZhouX., HuangS. Design, synthesis and anti-rheumatoid arthritis evaluation of doublering conjugated enones. Bioorg. Chem. 2021;109(4):104701. https://doi.org/10.1016/j.bioorg.2021.104701

10. Deng Q., Nie G., Pan L., Zou J.-J., Zhang X., Wang L. Highly selective self-condensation of cyclic ketones using mof-encapsulating phosphotungstic acid for renewable high-density fuel. Green Chem. 2015;17(8):4473–4481. https://doi.org/10.1039/C5GC01287B

11. Svetozarskii S.V., Zil’berman E.N. Autocondensation of Cyclic Ketones. Russ. Chem. Reviews. 1970;39(7):553–561. https://doi.org/10.1070/RC1970v039n07ABEH002006 [Original Russian Text: Svetozarskii S.V., Zil’berman E.N. Autocondensation of Cyclic Ketones. Uspekhi khimii. 1970;39(7):1173–1189 (in Russ.). https://doi.org/10.1070/RC1970v039n07ABEH002006 ]

12. Brindisi M., Gemma S., Kunjir S., Di Cerbo L., Brogi S., Parapini S., D’Alessandro S., Taramelli D., Habluetzel A., Tapanelli S., Lamponi S., Novellino E., Campiani G., Butini S. Synthetic spirocyclic endoperoxides: new antimalarial scaffolds. Med. Chem. Commun. 2015;6(2):357–362. https://doi.org/10.1039/C4MD00454J

13. Kuz’mina U.S., Raskil’dina G.Z., Ishmetova D.V., et al. Cytotoxic Activity Against SH-SY5Y Neuroblastoma Cells of Heterocyclic Compounds Containing gem-Dichlorocyclopropane and/or 1,3-Dioxacycloalkane Fragments. Pharm. Chem. J. 2022;55(12):1293–2022. https://doi.org/10.1007/s11094-022-02574-6 [Original Russian Text: Kuz’mina U.Sh., Raskil’dina G.Z., Ishmetova D.V., Sakhabutdinova G.N., Dzhumaev Sh.Sh., Borisova Yu.G., Vakhitova Yu.V., Zlotskii S.S. Cytotoxic activity of hererocyclic compounds containing gem-dichlorocyclopropane and/or 1,3-dioxacycloalkane fragments against SH-SY5Y neuroblastoma cells. KhimikoFarmatsevticheskii Zhurnal. 2021;55(12):27–32 (in Russ.). https://doi.org/10.30906/0023-1134-2021-55-12-27-32 ]

14. Borisova Y.G., Dzhumaev S.S., Khusnutdinova N.S. et al. Synthesis and Herbicidal Activity of Some Substituted 1,3-Dioxacycloalkanes and gem-Dichlorocyclopropanes. Russ. J. Gen. Chem. 2022;92(1):1–5. https://doi.org/10.1134/S1070363222010017 [Original Russian Text: Borisova Y.G., Dzhumaev S.S., Raskil’dina G.Z., Zlotskii S.S., Khusnutdinova N.S., Mryasova L.M. Synthesis and herbicidal activity of some substituted 1,3-dioxacycloalkanes and gem-dichlorocyclopropanes. Zhurnal Obshchei Khimii. 2022;92(1): 3–8 (in Russ.). https://doi.org/10.31857/S0044460X22010012 ]

15. Sudarsanam P., Mallesham B., Prasad A.N., Reddy P.S., Reddy B.M. Synthesis of bio-additive fuels from acetalization of glycerol with benzaldehyde over molybdenum promoted green solid acid catalysts. Fuel Process. Technol. 2013;106: 539–545. https://doi.org/10.1016/j.fuproc.2012.09.025

16. Kumar K., Pathak S., Upadhyayula S. Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst – A thermodynamic and kinetic analysis. Renew. Energy. 2021;167:282–293. https://doi.org/10.1016/j.renene.2020.11.084

17. Bell T.W., Vargas J.R., Crispino G.A. Interannular diastereoselectivity in the hydroboration of functionalized 1-cyclohexylcyclohexenes. J. Org. Chem. 1989;54(8): 1978–1987. https://doi.org/10.1021/jo00269a042

18. Jennings P.W., Gingerich S.B. A Synthetic Scheme for the Preparation of Oxygen Labelled Furan Compounds. J. Label. Compd. Radiopharm. 1982;20:591–603.

19. Reese J. Über 2-Cyclohexyliden-cyclohexanon, ein Isomeres des 2-Δ1-Cyclohexenyl-cyclohexanons. Chem. Ber. 1942;75(4): 384–394. https://doi.org/10.1002/cber.19420750414

20. Bao J., Tian H., Yang P., Deng J., Gui J. Modular synthesis of functionalized butenolides by oxidative furan fragmentation. Eur. J. Org. Chem. 2020;2020(3):339–347. https://doi.org/10.1002/ejoc.201901613

21. Creese M.W., Smissman E.E. Reaction of 2-(1,2-epoxycyclohex-1-yl)cyclohexanone ketal with boron trifluoride etherate. J. Org. Chem. 1976;41(1):169–170. https://doi.org/10.1021/jo00863a047

22. Ostapenko G.I., Gloukhov P.A., Bunev A.S. Investigation of 2-Cyclohexenylcyclohexanone as Steel Corrosion Inhibitor and Surfactant in Hydrochloric Acid. Corros. Sci. 2014;82(5): 265–270. https://doi.org/10.1016/j.corsci.2014.01.029


Review

For citations:


Vazhenin B.V., Golovanov A.A., Borisova Yu.G., Raskil’dina G.Z., Zlotskii S.S. Synthesis and properties of cyclic acetals of Wallach ketone. Fine Chemical Technologies. 2025;20(5):474-782. https://doi.org/10.32362/2410-6593-2025-20-5-474-482. EDN: PIYYFN

Views: 6


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)