Synthesis of complex oxides Eu2О3–Gd2О3–Zr(Hf)О2 using microwave radiation and study of their properties
https://doi.org/10.32362/2410-6593-2025-20-3-253-263
EDN: JWGODK
Abstract
Objectives. The authors synthesize complex oxide phases of the composition Eu2−xGdxZr2O7 and Eu2−xGdxHf2O7 at x = 0.5, 1.0, 1.5 under microwave heating conditions and investigate their phase composition, particle size distribution, and specific surface with the purpose of obtaining bulk ceramic materials on their basis and study their behavior when heated to 1473 K.
Methods. Using X-ray phase analysis, the phase composition of samples subjected to heat treatment at temperatures of 1473 and 1773 K was studied, and the cell parameters were calculated. The particle size of the obtained powders was analyzed by laser diffraction on a Fritsch Analysette 22 device. The specific surface area was studied by the Brunauer–Emmett–Teller method on a TriStar 3000 analyzer. Bulk ceramic materials were obtained by cold pressing with subsequent sintering at 1773 K. The coefficient of thermal expansion (CTE) of ceramic samples was studied on a Netzsch DIL 402C dilatometer in a temperature range of 300–1473 K.
Results. At a temperature of 1473 K, all synthesized samples were observed to form a fluorite structure; at a temperature of 1773 K, samples with the composition Eu2−xGdxHf2O7 had an ordered pyrochlore structure. With an increase in the gadolinium content in the samples, a decrease in both the unit cell parameter and the CTE was observed. The particle size of almost all samples did not exceed 100 μm; the specific surface area did not exceed 1 m2/g.
Conclusions. For the first time, compounds with the composition Eu2−xGdxZr2O7 and Eu2−xGdxHf2O7 were obtained using microwave processing at x = 0.5, 1.0, 1.5. As well as determining the dependence of the phase composition on the heat treatment temperature after microwave exposure, the dependence of the change in the unit cell parameters on the gadolinium content in the sample was studied, the particle size distribution was investigated. The CTEs of bulk ceramic samples obtained by cold pressing were additionally studied. The obtained data can be used in the development of thermal barrier coatings and technical ceramics used at high temperatures (up to 1473 K).
About the Authors
N. V. GrechishnikovRussian Federation
Nikolay V. Grechishnikov, Postgraduate Student
K.A. Bol’shakov Department of Chemistry and Technology Rare Elements
119454; 78, Vernadskogo pr.; Moscow
Scopus Author ID 58683791100
Competing Interests:
The authors declare no conflict of interest
E. E. Nikishina
Russian Federation
Elena E. Nikishina, Cand. Sci. (Chem.), Associate Professor
K.A. Bol’shakov Department of Chemistry and Technology Rare Elements
119454; 78, Vernadskogo pr.; Moscow
Scopus Author ID 6602839662, ResearherID О-7115-2014
Competing Interests:
The authors declare no conflict of interest
References
1. Lashmi P.G., Ananthapadmanabhan P.V., Unnikrishnan G., Aruna S.T. Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems. Eur. Ceram. Soc. 2020;40(8):2731–45. doi: 10.1016/j.jeurceramsoc.2020.03.016
2. Stanek C.R., Jiang C., Uberuaga B.P., Sickafus K.E., Cleave A.R., Grimes R.W. Predicted structure and stability of A<sub>4</sub>B<sub>3</sub>O<sub>12</sub> δ-phase compositions. Phys. Rev. B. 2019;80(17):174101. doi: 10.1103/PhysRevB.80.174101
3. Sankar J., Kumar S. Synthesis of Rare Earth Based Pyrochlore Structured (A<sub>2</sub>B<sub>2</sub>O<sub>7</sub>) Materials for Thermal Barrier Coatings (TBCs) – A Review. Curr. Appl. Sci. Technol. 2021;21(3):601–617. doi: 10.14456/cast.2021.47
4. Salazar-Zertuche M., Díaz-Guillén J.A., Acosta-García J.O., Díaz-Guillén J.C., Montemayor S.M., Burciaga-Díaz O., Bazaldua-Medellin M.E., Fuentes A.F. Ionic conductivity of Ln<sub>4</sub>Zr<sub>3</sub>O<sub>12</sub> solid electrolytes synthesized by mechanochemistry. Int. J. Hydrogen Energy. 2019;44(24):12500–12507. doi: 10.1016/j.ijhydene.2018.11.141
5. Popov V.V., Menushenkov A.P., Yaroslavtsev A.A., Zubavichus Y.V., Gaynanov B.R., Yastrebtsev A.A., Leshchev D.S, Chernikovet R.V. Fluorite-pyrochlore phase transition in nanostructured Ln<sub>2</sub>Hf<sub>2</sub>O<sub>7</sub> (Ln = La–Lu). J. Alloys Compd. 2016;689:669–679. doi: 10.1016/j.jallcom.2016.08.019
6. Popov V.V., Menushenkov A.P., Zubavichus Y.V., et al. Studying processes of crystallization and cation ordering in Eu<sub>2</sub>Hf<sub>2</sub>O<sub>7</sub>. Russ. J. Inorg. Chem. 2015;60(5):602–609. doi: 10.1134/S0036023615050162 ] [Original Russian Text: Popov V.V., Menushenkov A.P., Zubavichus Y.V., Yaroslavtsev A.A., Veligzhanin A.A., Kolyshkin N.A., Kulik E.S. Studying processes of crystallization and cation ordering in Eu<sub>2</sub>Hf<sub>2</sub>O<sub>7</sub>. Zhurnal neorganicheskoi khimii. 2015;60(5):672–680 (in Russ.). doi: 10.7868/S0044457X15050165
7. Popov V.V., Zubavichus Y.V., Menushenkov A.P., et al. Short- and long-range order balance in nanocrystalline Gd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> powders with a fluorite-pyrochlore structure. Russ. J. Inorg. Chem. 2014;59(4):279–285. doi: 10.1134/S0036023614040147 ] [Original Russian Text: Popov V.V., Zubavichus Y.V., Menushenkov A.P., Yaroslavtsev A.A., Kulik E.S., Petrunin V.F., Timofeeva N.N. Short- and long-range order balance in nanocrystalline Gd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> powders with a fluorite-pyrochlore structure. Zhurnal neorganicheskoi khimii. 2014;59(4):431–438 (in Russ.).
8. Sadykov V., Shlyakhtina A., Lyskov N., Sadovskaya E., Cherepanova S., Eremeev N., Skazka V., Goncharov V., Kharitonova E. Oxygen diffusion in Mg-doped Sm and Gd zirconates with pyrochlore structure. Ionics (Kiel). 2020;26(9):4621–4633. doi: 10.1007/s11581-020-03614-5
9. Chernov I.O., Kushtym A.V., Malykhin S.V,. Synthesis of Materials Based on Compounds of Rare Earth Elements With Titanium, Hafnium and Zirconium As Promising Neutron Absorbers for Nuclear Reactors. Probl. Atomic Sci. Technol. 2024;2024(4):64–78. doi: 10.46813/2024-152-064
10. Torres-Rodriguez J., Gutierrez-Cano V., Menelaou M., Kaštyl J., Cihlář J., Tkachenko S., Gonzalez J., Kalmar J., Fabian I., Lazar I., Celko L., Kaiser J. Rare-Earth Zirconate Ln<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (Ln: La, Nd, Gd, and Dy) Powders, Xerogels, and Aerogels: Preparation, Structure, and Properties. Inorg. Chem. 2019;58(21):14467–14477. doi: 10.1021/acs.inorgchem.9b01965
11. Zhang A., Lü M., Yang Z., Zhou G., Zhou Y. Systematic research on RE<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (RE = La, Nd, Eu and Y) nanocrystals: Preparation, structure and photoluminescence characterization. Solid State Sci. 2008;10(1):74–81. doi: 10.1016/j.solidstatesciences.2007.07.037
12. Matovic B., Maletaskic J., Zagorac J., Pavkov V., Maki R., Yoshida K., Yano T. Synthesis and characterization of pyrochlore lanthanide (Pr, Sm) zirconate ceramics. J. Eur. Ceram. Soc. 2020;40(7):2652–2657. doi: 10.1016/j.jeurceramsoc.2019.11.012
13. Zeng J., Wang H., Zhang Y.C., Zhu M.K., Yan H. Hydrothermal synthesis and photocatalytic properties of pyrochlore La<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> nanocubes. J. Phys. Chem. C. 2007;111(32): 11879–11887. doi: 10.1021/jp0684628
14. Wang Q., Cheng X., Li J., Jin H. Hydrothermal synthesis and photocatalytic properties of pyrochlore Sm<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> nanoparticles. J. Photochem. Photobiol. A: Chemistry. 2016;321:48–54. doi: 10.1016/j.jphotochem.2016.01.011
15. Perera S.S., Munasinghe H.N., Yatooma E.N., Rabuffetti F.A. Microwave-assisted solid-state synthesis of NaRE(MO<sub>4</sub>)<sub>2</sub> phosphors (RE = La, Pr, Eu, Dy; M = Mo, W). Dalton Trans. 2020;49(23):7914–7919. doi: 10.1039/D0DT00999G
16. Fetter G., Bosch P., Lopez T. ZrO<sub>2</sub> and Cu/ZrO<sub>2</sub> Sol–Gel Synthesis in Presence of Microwave Irradiation. J. Sol- Gel Sci. Technol. 2002;23:199–203. doi: 10.1023/A:1013983211564
17. Vanetsev A.S., Tretyakov Y.D. Microwave-assisted synthesis of individual and multicomponent oxides. Russ. Chem. Rev. 2007;76(5):397–413. doi: 10.1070/RC2007v076n05ABEH003650 ] [Original Russian Text: Vanetsev A.S., Tretyakov Y.D. Microwave-assisted synthesis of individual and multicomponent oxides. Uspekhi khimii. 2007;76(5):435–453 (in Russ.). doi: 10.1070/RC2007v076n05ABEH003650
18. Długosz O., Szostak K., Banach M. Photocatalytic properties of zirconium oxide–zinc oxide nanoparticles synthesised using microwave irradiation. Appl. Nanosci. 2020;10(3): 941–954. doi: 10.1007/s13204-019-01158-3
19. Kucio K., Sydorchuk V., Khalameida S., Charmas B. Mechanochemical and microwave treatment of precipitated zirconium dioxide and study of its physical–chemical, thermal and photocatalytic properties. J. Therm. Anal. Calorim. 2022;147:253–262. doi: 10.1007/s10973-020-10285-x
20. Batool T., Bukhari B.S., Riaz S., Batoo K.M., Raslan E.H., Hadi M. Microwave assisted sol–gel synthesis of bioactive zirconia nanoparticles–correlation of strength and structure. J. Mech. Behav. Biomed. Mater. 2020;112:104012. doi: 10.1016/j.jmbbm.2020.104012
21. Mahendran N., Johnson Jeyakumar S., Jothibas M., Ponnar M., Muthuvel A. Synthesis, characterization of undoped and copper-doped hafnium oxide nanoparticles by sol–gel method. J. Mater. Sci.: Mater. Electron. 2022;33(13):10439–10449. doi: 10.1007/s10854-022-08031-0
22. Grechishnikov N.V., Nikishina E.E., Il’icheva A.A., Podzorova L.I. Effect of microwave treatment on the phase composition of europium zirconate during dilution synthesis. Tsvetnye Metally. 2023;10:51–55 (in Russ.). doi: 10.17580/tsm.2023.10.06
23. Fuentes A.F., O’Quinn E.C., Montemayor S.M., Zhou H., Lang M., Ewing R.C.. Pyrochlore-type lanthanide titanates and zirconates: Synthesis, structural peculiarities, and properties. Appl. Phys. Rev. 2024;11(2):021337. doi: 10.1063/5.0192415
24. Talanov M.V., Talanov V.M. Formation of breathing pyrochlore lattices: Structural, thermodynamic and crystal chemical aspects. CrystEngComm. 2020;22(7):1176–1187. doi: 10.1039/C9CE01635J
25. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sect. A. 1976;32(5):751–767. doi: 10.1107/S0567739476001551
26. Saradhi M.P., Ushakov S.V., Navrotsky A. Fluorite-pyrochlore transformation in Eu<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> – Direct calorimetric measurement of phase transition, formation and surface enthalpies. RSC Adv. 2012;2(8):3328–3334. doi: 10.1039/c2ra00727d
27. Pavlyuchkov D., Seidel J., Dzuban A., Savinykh G., Schreiber G. Heat capacity for the Eu<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> and phase relations in the ZrO<sub>2</sub>–Eu<sub>2</sub>O<sub>3т</sub> system: Experimental studies and calculations. Thermochim. Acta. 2013;558:74–82. doi: 10.1016/j.tca.2013.02.009
28. Liu X., Wang H., Wang W., Fu Z. A prediction model of thermal expansion coefficient for cubic inorganic crystals by the bond valence model. J. Solid. State. Chem. 2021;299:122111. doi: 10.1016/j.jssc.2021.122111
29. Kutty K.V., Rajagopalan S., Mathews C.K., Varadaraju U.V. Thermal expansion behaviour of some rare earth oxide pyrochlores. Mater. Res. Bull. 1994;29(7):759–66. doi: 10.1016/0025-5408(94)90201-1
30. Liu Z, Shen Z, Liu G, He L, Mu R, Xu Z. Sm-doped Gd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> thermal barrier coatings: Thermal expansion coefficient, structure and failure. Vacuum. 2021;190:110314. doi: /10.1016/j.vacuum.2021.110314
31. Hagiwara T., Nomura K., Kageyama H. Crystal structure analysis of Ln<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (Ln = Eu and La) with a pyrochlore composition by high-Temperature powder X-ray diffraction. J. Ceram. Soc. Japan. 2017;125(2):65–70. doi: 10.2109/jcersj2.16248
32. Yang P., An Y., Yang D., Li Y., Chen J. Structure, thermal properties and hot corrosion behaviors of Gd<sub>2</sub>Hf<sub>2</sub>O<sub>7</sub> as a potential thermal barrier coating material. Ceram. Int. 2020;46(13):21367–21377. doi: 10.1016/j.ceramint.2020.05.234
Review
For citations:
Grechishnikov N.V., Nikishina E.E. Synthesis of complex oxides Eu2О3–Gd2О3–Zr(Hf)О2 using microwave radiation and study of their properties. Fine Chemical Technologies. 2025;20(3):253-263. https://doi.org/10.32362/2410-6593-2025-20-3-253-263. EDN: JWGODK