Preview

Fine Chemical Technologies

Advanced search

N-[(1RS)-camphane-2-ylidene]aniline: A novel efficient liquid UV absorber for 3D printing

https://doi.org/10.32362/2410-6593-2025-20-2-137-145

EDN: JYMQMK

Abstract

Objectives. To investigate the effectiveness of N-[(1RS)-camphanyl-2-ylidene]aniline as an ultraviolet (UV) absorber in 3D printing using digital light processing.

Methods. Polymerization process parameters were determined using а Netzsch DSC 204 F1 Phoenix differential scanning calorimeter equipped with an OmniCure S2000 UV irradiation attachment (400–500 nm filter). Samples were printed on a Minicube ULTRA 3D printer using a 405-nm LED light source. Dimensional accuracy during printing was evaluated according to ISO 52902:2019. Mechanical properties were determined using a Zwick/Roell Zwicki Z5.0 universal testing machine, while heat deflection temperature was measured on a Gotech HDT-HV-2000-3 device.

Results. The conversion degree of double bonds determined from differential scanning calorimetry results for a photopolymerizable composition containing camphor anil are almost identical to that for the composition without a UV absorber. The high gel fraction content in the samples indicates the formation of cross-linked polymers. The level of physical and mechanical properties, as determined in tensile and flexural parameters, is largely unaffected by the use of the type of UV absorbers considered. Tensile strength values are comparable to those of oligocarbonate methacrylate OСM-2-based materials produced under radiation polymerization conditions. Dimensional deviation for materials containing camphor anils is smaller than for compositions without a UV absorber or for compositions using a triazole derivative as an absorber.

Conclusions. The effectiveness of camphor anils as UV absorbers in the photopolymerizable composition is confirmed. With high dimensional accuracy in printing, it is possible to produce densely cross-linked polymers offering desirable physicomechanical properties and heat deflection temperatures.

About the Authors

N. V. Sidorenko
Volgograd State Technical University
Russian Federation

Nina V. Sidorenko, Cand. Sci. (Eng.), Associate Professor, Department of Сhemistry and Processing Technology of Elastomers

ResearcherID A-9544-2014, Scopus Author ID 16308435400

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest



M. A. Vaniev
Volgograd State Technical University
Russian Federation

Marat A. Vaniev, Dr. Sci. (Eng.), Head of the Department of Сhemistry and Processing Technology of Elastomers

Scopus Author ID 14063995400

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest



Iu. M. Mkrtchyan
Volgograd State Technical University
Russian Federation

Yurii M. Mkrtchyan, Assistant, Department of Сhemistry and Processing Technology of Elastomers

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest



N. A. Salykin
SIBUR-Innovations, SIBUR Holding
Russian Federation

Nikita A. Salykin, Specialist (Spectroscopy and Thermal Analysis), Analytical R&D Support Center

ScopusAuthor ID 57415508300

2, bld. 270, Kuzovlevsky tract, Tomsk, 634067


Competing Interests:

The authors declare no conflicts of interest



A. A. Vernigora
Volgograd State Technical University
Russian Federation

Andrey A. Vernigora, Senior Lecturer, Organic Chemistry Department

Scopus Author ID 57191338560

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest



I. A. Novakov
Volgograd State Technical University
Russian Federation

Ivan A. Novakov, Academician at the Russian Academy of Sciences, Dr. Sci. (Chem.), Heard of the Department of Analytical, Physical Chemistry and Physical Chemistry of Polymers, President

Scopus Author ID 7003436556, ResearcherID I-4668-2015

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest



References

1. Al Rashid A., Ahmed W., Khalid M.Y., Koç M. Vat photopolymerization of polymers and polymer composites: Processes and applications. Addit. Manuf. 2021;47:102279. https://doi.org/10.1016/j.addma.2021.102279

2. Lalatovic A., Vaniev M.A., Sidorenko N.V., Gres I.M., Dyachenko D. Y., Makedonova Y.A. A review on Vat Photopolymerization 3D-printing processes for dental application. Dent. Mater. 2022;38(11):e284–e296. https://doi.org/10.1016/j.dental.2022.09.005

3. Caussin E., Moussally C., Le Goff S., Fasham T., TroizierCheyne M., Tapie L., François P. Vat photopolymerization 3D printing in dentistry: A comprehensive review of actual popular technologies. Materials. 2024.;17(4):950. https://doi.org/10.3390/ma17040950

4. Dileep C., Jacob L., Umer R., Butt H. Review of Vat photopolymerization 3D Printing of Photonic Devices. Addit. Manuf. 2024. P. 104189. https://doi.org/10.1016/j.addma.2024.104189

5. Seo J.W., Kim G.M., Choi Y., Cha J.M., Bae H. Improving printability of digital-light-processing 3D bioprinting via photoabsorber pigment adjustment. Int. J. Mol. Sci. 2022;23(10):5428. https://doi.org/10.3390/ijms23105428

6. Gastaldi M., Cardano F., Zanetti M., Viscardi G., Barolo C., Bordiga S., Magdassi S., Fin A., Roppolo I. Functional dyes in polymeric 3D printing: applications and perspectives. ACS Mater. Lett. 2021;3(1):1–17. https://doi.org/10.1021/acsmaterialslett.0c00455

7. Kowsari K., Zhang B., Panjwani S., Chen Z., Hingorani H., Akbari S., Fang N.X., Ge Q. Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing. Addit. Manuf. 2018;24:627–638. https://doi.org/10.1016/j.addma.2018.10.037

8. Gong H., Bickham B.P., Woolley A.T., Nordin G.P. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip. 2017;17(17):2899–2909. https://doi.org/10.1039/c7lc00644f

9. Endo A., Yamasaki S., Uno S. Lithographic Printing Plate Precursor and Method of Producing Printing Plate: USA Pat. US 7939240. Publ. 10.05.2011.

10. Kunita K., Yamasaki S. Planographic Printing Plate Precursor Using a Polymerizable Composition: Pat. EP 3182204. Publ. 21.06.2017.

11. Bail R., Hong J.Y., Chin B.D. Effect of a red-shifted benzotriazole UV absorber on curing depth and kinetics in visible light initiated photopolymer resins for 3D printing. J.Ind. Eng. Chem. 2016;38:141–145. https://doi.org/10.1016/j.jiec.2016.04.017

12. Kolb C., Lindemann N., Wolter H., Sextl G. 3D‐printing of highly translucent ORMOCER®‐based resin using light absorber for high dimensional accuracy. J. Appl. Polym. Sci. 2021;138(3):49691. https://doi.org/10.1002/app.49691

13. Novakov I.A., Brunilin R.V., Vernigora A.A., Davidenko A.V., Deshevov P.P., Navrotskii M.B. Method for Producing D-Camphor Anils: RF Pat. 2750161. Publ. 22.06.2021 (in Russ.).

14. Chesnokov S.A., Zakharina M.Y., ShaplovA., Lozinskaya E.I., Malyshkina I.A., Abakumov G.A., Vidal F., Vygodskii Y.S. Photopolymerization of Poly (ethylene glycol) dimethacrylates: The influence of ionic liquids on the formulation and the properties of the resultant polymer materials. J. Polym. Sci. Part A: Polym. Chem. 2010;48(11):2388–2409. https://doi.org/10.1002/pola.24008

15. Buravov B.A., Al-Khamzawi A., Bochkarev E.S., Grichishkina N.Kh., Borisov S.V., Sidorenko N.V., Tuzhikov O.I., Tuzhikov O.O. Synthesis of new photo-cured phosphorus-containing oligoestermethacrylates with a spacer in the structure. Fine Chem. Technol. 2022;17(5):410–426. https://doi.org/10.32362/2410-6593-2022-17-5-410-426

16. Sidorenko N.V., Mkrtchyan Yu.M., Vaniev M.A., Popov N.I., Vernigora A.A., Davidenko A.V., Salykin N.A., Novakov I.A. Use of D-Camphor Anils as UV Absorbers of Photopolymerizable Compositions for 3D Printing: RF Pat. 2794337. Publ. 17.04.2023 (in Russ.).

17. Sivergin Yu.M., Pernikis R.Ya., Kireeva S.M. Polikarbonat(met)akrilaty (Polycarbonate(met)acrylates). Riga: Zinatne; 1988. 213 p. (in Russ.). ISBN 5-7966-0036-2

18. Matveeva I.A., Shashkova V.T., Lyubimov A.V., Lyubimova G.V., Koltsova L.S., Shienok A.I., Zaichenko N.L., Levin P.P. Luminescent Properties of Polycarbonate Methacrylates Containing Organic Fluorescent Dyad. Coatings. 2023;13(6):1071. https://doi.org/10.3390/coatings13061071.


Supplementary files

1. Sample model for determining linear accuracy
Subject
Type Исследовательские инструменты
View (8KB)    
Indexing metadata ▾
  • The effectiveness of N-[(1RS)-camphanyl-2-ylidene]aniline as an ultraviolet (UV) absorber in 3D printing using digital light processing was investigated.
  • The effectiveness of camphor anils as UV absorbers in the photopolymerizable composition is confirmed.
  • With high dimensional accuracy in printing, it is possible to produce densely cross-linked polymers offering desirable physicomechanical properties and heat deflection temperatures.

Review

For citations:


Sidorenko N.V., Vaniev M.A., Mkrtchyan I.M., Salykin N.A., Vernigora A.A., Novakov I.A. N-[(1RS)-camphane-2-ylidene]aniline: A novel efficient liquid UV absorber for 3D printing. Fine Chemical Technologies. 2025;20(2):137-145. https://doi.org/10.32362/2410-6593-2025-20-2-137-145. EDN: JYMQMK

Views: 794


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)