Preview

Fine Chemical Technologies

Advanced search

Development of technology for culturing a cell line producing a single-domain antibody fused with the Fc fragment of human IgG1

https://doi.org/10.32362/2410-6593-2024-19-3-240-257

EDN: JHCZWL

Abstract

Objectives. To develop an effective technology for the cultivation of Chinese hamster ovary (CHO) cells stably producing GamP2C5 antibody which is a component I of the GamCoviMab candidate drug for emergency prevention and therapy of  infection caused by SARS-CoV-2 virus; to select optimal cultivation parameters and to scale this technology in production.
Methods. The study was performed on CHO GamP2C5 (clone 78) cell culture, producing a single-domain antibody fused to the Fc fragment of human IgG1 GamP2C5. Different culture media and supplements were used. Cells were cultured in Erlenmeyer flasks, Biostat® RM 20 wave-mixed bioreactor, Ambr® 250 mini bioreactors, STR 200 stirred-tank bioreactor.
Results. Using molecular-genetic and biotechnological methods, a stable clone producer of CHO GamP2C5 antibody, clone 78, was obtained. Then a technique was worked out for the cultivation of the obtained clone producer on different culture media. The most suitable cultivation regimes, culture media, and optimal supplements were selected. This technology was tested in laboratory conditions in a 10-L reactor, and then successfully scaled up for production at the MedGamal Branch of the Gamaleya National Research Center for Epidemiology and Microbiology.
Conclusions. This study demonstrates the fundamental feasibility of developing and scaling up a culture technology, in order to produce a drug based on a modified single-domain antibody with virus neutralizing activity against different strains of SARS-CoV-2 virus.

About the Authors

D. S. Polyansky
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation; MIREA — Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Dmitry S. Polyansky, Technologist, Medgamal Branch

18, Gamaleya ul., Moscow, 123098;

Assistant Professor, I.P. Alimarin Department of Analytical Chemistry

86, Vernadskogo pr., Moscow, 119571



E. I. Ryabova
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation; Moscow State Academy of Veterinary Medicine and Biotechnology — K.I. Skryabin MVA
Russian Federation

Ekaterina I. Ryabova, Junior Researcher, Laboratory of  Immunobiotechnology

18, Gamaleya ul., Moscow, 123098;

Postgraduate Student

23, Akademika Skryabina ul., Moscow, 109472

Scopus Author ID 57301278100

ResearcherID AAE-7335-2022



A. A. Derkaev
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Artem A. Derkaev, Junior Researcher, Laboratory of Immunobiotechnology

18, Gamaleya ul., Moscow, 123098

Scopus Author ID 57381507000

ResearcherID AFU-7075-2022



N. S. Starkov
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Nikita S. Starkov,Technologist, Medgamal Branch

18, Gamaleya ul., Moscow, 123098



I. S. Kashapova
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Irina S. Kashapova, Researcher, Laboratory of Molecular Biotechnology

18, Gamaleya ul., Moscow, 123098



D. V. Shcheblyakov
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Dmitry V. Shcheblyakov, Cand. Sci. (Biol.), Leading  Researcher, Head of the Laboratory of Immunobiotechnology

18, Gamaleya ul., Moscow, 123098

Scopus Author ID 35073056900

ResearcherID E-5899-2014



A. P. Karpov
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Andrey P. Karpov, Cand. Sci. (Biol.), Chief Technologist, Medgamal Branch

18, Gamaleya ul., Moscow, 123098



I. B. Esmagambetov
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Ilias B. Esmagambetov, Cand. Sci. (Biol.), Leading Researcher, Heard of the Laboratory of Stromal  Regulation of Immunity

18, Gamaleya ul., Moscow, 123098

Scopus Author ID 56120429700

ResearcherID E-3327-2014



References

1. Sun J., Yang .D., Xie X., Li L., Zeng H.Z., Gong B., Xu J.Q., Wu J.H., Qu B.B., Song G.W. Clinical application of SARS-CoV-2 antibody detection and monoclonal antibody therapies against COVID-19. World J. Clin. Cases. 20236;11(10):2168–2180. https://doi.org/10.12998/wjcc.v11.i10.2168

2. Mitra S., Tomar P.S. Hybridoma technology; advancements, clinical significance, and future aspects. J. Genet. Eng. Biotechnol. 2021;19(1):159. https://doi.org/10.1186/s43141-021-00264-6

3. Lu R.M., Hwang Y.C., Liu I.J., Lee C.C., Tsai H.Z., Li H.J., Wu H.C. Development of therapeutic antibodies for the treatment f diseases. J. Biomed. Sci. 2020;27(1):1. https://doi.org/10.1186/s12929-019-0592-z

4. Quinteros D.A., Bermúdez J.M., Ravetti S., CidA., Allemandi D.A., Palma S.D. Therapeutic use of monoclonal antibodies: general aspects and challenges for drug delivery. Chapter 25. In: Nanostructures for Drug Delivery. Micro and Nano Technologies. 2017:807–833. https://doi.org/10.1016/B978-0-323-46143-6.00025-7

5. Garcia J., Hurwitz H.I., Sandler A.B., Miles D., Coleman R.L., Deurloo R., Chinot O.L. Bevacizumab (Avastin®) in cancer treatment: a review of 15 years of clinical experience and future outlook. Cancer Treat. Rev. 2020;86:102017. https://doi.org/10.1016/j.ctrv.2020.102017

6. Chisari C.G., Sgarlata E., Arena S., Toscan S., Luca M., Patti F. Rituximab for the treatment of multiple sclerosis: a review. J. Neurol. 2022;269(1):159–183. https://doi.org/10.1007/s00415-020-10362-z

7. Hemperly A., Vande Casteele N. Clinical Pharmacokinetics and Pharmacodynamics of Infliximab in the Treatment of Inflammatory Bowel Disease. Clin. Pharmacokinet. 2018;57(8):929–942. https://doi.org/10.1007/s40262-017-0627-0

8. Weinblatt M.E., Keystone E.C., Furst D.E., Kavanaugh A.F., Chartash E.K., Segurado O.G. Long term efficacy and safety of adalimumab plus methotrexate in patients with rheumatoid arthritis: ARMADA 4-year extended study. Ann. Rheum. Dis. 2006;65(6):753–759. https://doi.org/10.1136/ard.2005.044404

9. Salazar G., Zhang N., Fu T.M., An Z. Antibody therapies for the prevention and treatment of viral infections. NPJ Vaccines. 2017;2:19. https://doi.org/10.1038/s41541-017-0019-3

10. Pelegrin M., Naranjo-Gomez M., Piechaczyk M. Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents? Trends Microbiol. 2015;23(10): 653–665. https://doi.org/10.1016/j.tim.2015.07.005

11. Pantaleo G., Correia B., Fenwick C., Joo V.S., Perez L. Antibodies to combat viral infections: development strategies and progress. Nat. Rev. Drug Discov. 2022;21(9):676–696. https://doi.org/10.1038/s41573-022-00495-3

12. Miyazato Y., Yamamoto K., Nakaya Y., Morioka S., Takeuchi J.S., Takamatsu Y., Maeda K., Kimura M., Sugiura W., Mitsuya H., Yano M., Ohmagaria N. Successful use of casirivimab/imdevimab anti-spike monoclonal antibodies to enhance neutralizing antibodies in a woman on anti-CD20 treatment with refractory COVID-19. J. Infect. Chemother. 2022;28(7):991–994. https://doi.org/10.1016/j.jiac.2022.03.002

13. Jovčevska I., Muyldermans S. The Therapeutic Potential of Nanobodies. BioDrugs. 2019;34(1):11–26. https://doi.org/10.1007/s40259-019-00392-z

14. Esmagambetov I.B., Shcheblyakov D.V., Egorova D.A., Voronina O.L., Derkaev A.A., Voronina D.V., Popova O., Ryabova E.I., Shcherbinin D.N., Aksenova E.I., SemenovA.N., Kunda M.S., Ryzhova N.N., Zubkova O.V., Tukhvatulin A.I., Logunov D.Y., Naroditsky B.S., Borisevich S.V., Gintsburg A.L. Nanobodies Are Potential Therapeutic Agents for the Ebola Virus Infection. Acta Naturae. 2021;13(4): 53–63. https://doi.org/10.32607/actanaturae.11487 ]

15. Derkaev A.A., Ryabova E.I., Esmagambetov I.B., Shcheblyakov D.V., Godakova S.A., Vinogradova I.D., Noskov A.N., Logunov D.Y., Naroditsky B.S., Gintsburg A.L. rAAV expressing recombinant neutralizing antibody for the botulinum neurotoxin type A prophylaxis. Front. Microbiol. 2022;13:960937. https://doi.org/10.3389/fmicb.2022.960937

16. Voronina D.V., Shcheblyakov D.V., Favorskaya I.A., Esmagambetov I.B., Dzharullaeva A.S., Tukhvatulin A.I., Zubkova O.V., Popova O., Kan V.Y., Bandelyuk A.S., Shmarov M.M., Logunov D.Y., Naroditskiy B.S., Gintsburg A.L. Cross-Reactive Fc-Fused Single-Domain Antibodies to Hemagglutinin Stem Region Protect Mice from Group 1 Influenza a Virus Infection. Viruses. 2022;14(11):2485. https://doi.org/10.3390/v14112485

17. Panova E.A., Kleymenov D.A., Shcheblyakov D.V., Bykonia E.N., Mazunina E.P., Dzharullaeva A.S., Zolotar A.N., Derkaev A.A., Esmagambetov I.B., Sorokin I.I., Usachev E.V., Noskov A.N., Ivanov I.A., Zatsepin T.S., Dmitriev S.E., Gushchin V.A., Naroditsky B.S., Logunov D.Y., Gintsburg A.L. Single-domain antibody delivery using an mRNA platform protects against lethal doses of botulinum neurotoxin A. Front. Immunol. 2023;14:1098302. https://doi.org/10.3389/fimmu.2023.1098302

18. Godakova S.A., Noskov A.N., Vinogradova I.D., Ugriumova G.A., Solovyev A.I., Esmagambetov I.B.., Tukhvatulin AI., Logunov D.Y., Naroditsky B.S.., Shcheblyakov D.V., Gintsburg A.L. Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice. Toxins (Basel). 2019;11(8):464. https://doi.org/10.3390/toxins11080464

19. Esmagambetov I.B., Ryabova E.I., Derkaev A.A., Shcheblyakov D.V., Dolzhikova I.V., Favorskaya I.A., Grousova D.M., Dovgiy M.A., Prokofiev V.V., GosudarevA.I., Byrikhina D.V., Zorkov I.D., Iliukhina A.A., Kovyrshina A.V., Shelkov A.Y., Naroditsky B.S., Logunov D.Y., Gintsburg A.L. rAAV expressing recombinant antibody for emergency prevention and long-term prophylaxis of COVID-19. Front. Immunol. 2023;14:1129245. https://doi.org/10.3389/fimmu.2023.1129245

20. Favorskaya I.A., Shcheblyakov D.V., Esmagambetov I.B., Dolzhikova I.V., Alekseeva I.A., Korobkova A.I., Voronina D.V., Ryabova E.I., Derkaev A.A., Kovyrshina A.V., et al. Single-Domain Antibodies Efficiently Neutralize SARS-CoV-2 Variants of Concern. Front. Immunol. 2022;13:822159. https://doi.org/10.3389/fimmu.2022.822159

21. Sedova E.S., Shcherbinin D.N., Bandelyuk A.S., Verkhovskaya L.V., Viskova N.Yu., Avdonina E.D., Prokofiev V.V., Ryabova E.I., Esmagambetov I.B., Pervoykina K.A., Bogacheva E.A., Lysenko A.A., Shmarov M.M. Method for obtaining recombinant antibodies produced by a cell line transduced with recombinant adenoviruses. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2023;18(1):48–64 (Russ., Eng.). https://doi.org/10.32362/2410-6593-2023-18-1-48-64 ]

22. Yao T., Asayama Y. Animal-cell culture media: History, characteristics, and current issues. Reprod. Med. Biol. 2017;16(2):99–117. https://doi.org/10.1002/rmb2.12024

23. Xu P., Clark C., Ryder T., Sparks C., Zhou J., Wang M., Russell R., Scott C. Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development. Biotechnol. Prog. 2017;33(2):478–489. https://doi.org/10.1002/btpr.2417


Supplementary files

1. Schematic representation of a single-domain antibody fused with the Fc fragment of human IgG1 GamP2C5
Subject
Type Исследовательские инструменты
View (136KB)    
Indexing metadata ▾
  • An effective technology for the cultivation of Chinese hamster ovary (CHO) cells stably producing GamP2C5 antibody which is a component I of GamCoviMab for emergency prophylaxis and therapy of infection caused by SARS-CoV-2 virus is developed.
  • Using molecular-genetic and biotechnological methods, a stable clone of antibody producer CHO-GamP2C5 clone 78 was obtained. Then a technique was worked out for the cultivation of the obtained clone of the producer on different culture media.
  • The most suitable cultivation regimes, culture media and optimal supplements were selected.
  • This technology was tested in laboratory conditions in a 10-L reactor, and then successfully scaled up for production.

Review

For citations:


Polyansky D.S., Ryabova E.I., Derkaev A.A., Starkov N.S., Kashapova I.S., Shcheblyakov D.V., Karpov A.P., Esmagambetov I.B. Development of technology for culturing a cell line producing a single-domain antibody fused with the Fc fragment of human IgG1. Fine Chemical Technologies. 2024;19(3):240-257. https://doi.org/10.32362/2410-6593-2024-19-3-240-257. EDN: JHCZWL

Views: 502


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)