Технология PROTAC® и перспективы ее применения в борьбе с инфекциями
https://doi.org/10.32362/2410-6593-2024-19-3-214-231
EDN: FUJWGT
Аннотация
Цели. Описать фармацевтическую технологию направленной деградации белковых молекул (PROTAC®, PROteolysis TArgeting Chimera), подходы к конструированию молекулы PROTAC®, методы подбора и синтеза лигандов и линкера, а также применение данной технологии в борьбе с различными заболеваниями и возможные ограничения ее использования.
Результаты. Обзор охватывает 77 источников, в основном за 2020–2023 гг. В обзоре изложен принцип технологии PROTAC®, который заключается в конструировании химерной молекулы, состоящей из трех фрагментов. Один фрагмент специфически связывается с биомишенью, другой рекрутирует протеолитическую систему клетки-хозяина, а третий связывает их между собой. Описаны направления современного развития технологии, а также возможности и ограничения химерных молекул в борьбе с разными типами инфекционных заболеваний.
Выводы. Показаны перспективы использования технологии PROTAC® в борьбе с онкологическими, нейродегенеративными, аутоиммунными и инфекционными заболеваниями.
Ключевые слова
Об авторах
М. А. ЗахароваРоссия
Захарова Мария Андреевна, аспирант, кафедра биотехнологии и промышленной фармации
119571, Москва, пр-т Вернадского, д. 6
М. В. Чудинов
Россия
Чудинов Михаил Васильевич, к.х.н., доцент кафедры биотехнологии и промышленной фармации
119571, Москва, пр-т Вернадского, д. 86
Scopus Author ID 6602589900
ResearcherID L-5728-2016
Список литературы
1. Sakamoto K.M., Kim K.B., Kumagai A., Mercurio F., Crews C.M., Deshaies R.J. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. U S A. 2001;98(15):8554–8559. https://doi.org/10.1073/pnas.141230798
2. Kleiger G., Mayor T. Perilous journey: a tour of the ubiquitinproteasome system. Trends Cell Biol. 2014;24(6):352–359. https://doi.org/10.1016/j.tcb.2013.12.003
3. Bekes M., Langley D.R., Crews C.M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 2022;21(3):181–200. https://doi.org/10.1038/s41573-021-00371-6
4. He M., Cao C., Ni Z., Liu Y., Song P., Hao S., et al. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct. Target. Ther. 2022;7(1):181. https://doi.org/10.1038/s41392-022-00999-9
5. Королева О.А., Дутикова Ю.В., Трубников А.В., Зенов Ф.А., Манасова Е.В., Штиль А.А., Куркин А.В. PROTAC — стратегия развития мишень-направленных лекарств: принципы и ограничения. Известия Академии Наук. Серия химическая. 2022;71(11):2310–2334. https://doi.org/10.1007/s11172-022-3659-z
6. Cao C., He M., Wang L., He Y., Rao Y. Chemistries of bifunctional PROTAC degraders. Chem. Soc. Rev. 2022;51(16):7066–7114. https://doi.org/10.1039/d2cs00220e
7. Liu Z., Hu M., Yang Y., Du C., Zhou H., Liu C., et al. An overview of PROTACs: a promising drug discovery paradigm. Mol. Biomed. 2022;3(1):46. https://doi.org/10.1186/s43556-022-00112-0
8. Yang N., Kong B., Zhu Z., Huang F., Zhang L., Lu T., et al. Recent advances in targeted protein degraders as potential therapeutic agents. Mol. Divers. 2024;28:309–333. https://doi.org/10.1007/s11030-023-10606-w
9. Li S., Chen T., Liu J., Zhang H., Li J., Wang Z., et al. PROTACs: Novel tools for improving immunotherapy in cancer. Cancer Lett. 2023;560:216128. https://doi.org/10.1016/j.canlet.2023.216128
10. Guedeney N., Cornu M., Schwalen F., Kieffer C., Voisin-Chiret A.S. PROTAC technology: A new drug design for chemical biology with many challenges in drug discovery. Drug Discov. Today. 2023;28(1):103395. https://doi.org/10.1016/j.drudis.2022.103395
11. Bricelj A., Steinebach C., Kuchta R., Gutschow M., Sosic I. E3 Ligase Ligands in Successful PROTACs: An Overview of Syntheses and Linker Attachment Points. Front. Chem. 2021;9:707317. https://doi.org/10.3389/fchem.2021.707317
12. Chamberlain P.P., Lopez-Girona A., Miller K., Carmel G., Pagarigan B., Chie-Leon B., et al. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 2014;21(9):803–809. https://doi.org/10.1038/nsmb.2874
13. Simpson L.M., Glennie L., Brewer A., Zhao J.F., Crooks J., Shpiro N., et al. Target protein localization and its impact on PROTAC-mediated degradation. Cell Chem. Biol. 2022;29(10):1482–1504.e7. https://doi.org/10.1016/j.chembiol.2022.08.004
14. Shah V.J., Đikić I. Localization matters in targeted protein degradation. Cell Chem. Biol. 2022;29(10):1465–1466. https://doi.org/10.1016/j.chembiol.2022.09.006
15. Bemis T.A., La Clair J.J., Burkart M.D. Unraveling the Role of Linker Design in Proteolysis Targeting Chimeras. J. Med. Chem. 2021;64(12):8042–8052. https://doi.org/10.1021/acs.jmedchem.1c00482
16. Gadd M.S., Testa A., Lucas X., Chan K.H., Chen W., Lamont D.J., et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 2017;13(5):514–521. https://doi.org/10.1038/nchembio.2329
17. Cao C., Yang J., Chen Y., Zhou P., Wang Y., Du W., et al. Discovery of SK-575 as a Highly Potent and Efficacious Proteolysis-Targeting Chimera Degrader of PARP1 for Treating Cancers. J. Med. Chem. 2020;63(19):11012–11033. https://doi.org/10.1021/acs.jmedchem.0c00821
18. Carmony K.C., Kim K.B. PROTAC-induced proteolytic targeting. In: Dohmen R., Scheffner M. (Eds.). Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology. Humana Press; 2012. V. 832. P. 627–638. https://doi.org/10.1007/978-1-61779-474-2_4419
19. Bondeson D.P., Smith B.E., Burslem G.M., Buhimschi A.D., Hines J., Jaime-Figueroa S., et al. Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. Cell Chem. Biol. 2018;25(1):78–87.e5. https://doi.org/10.1016/j.chembiol.2017.09.010
20. Paiva S.L., Crews C.M. Targeted protein degradation: elements of PROTAC design. Curr. Opin. Chem. Biol. 2019;50:111–119. https://doi.org/10.1016/j.cbpa.2019.02.022
21. Rao Z., Li K., Hong J., Chen D., Ding B., Jiang L., et al. A practical “preTACs-cytoblot” platform accelerates the streamlined development of PROTAC-based protein degraders. Eur. J. Med. Chem. 2023;251:115248. https://doi.org/10.1016/j.ejmech.2023.115248
22. Guo L., Zhou Y., Nie X., Zhang Z., Zhang Z., Li C., et al. A platform for the rapid synthesis of proteolysis targeting chimeras (Rapid-TAC) under miniaturized conditions. Eur. J. Med. Chem. 2022;236:114317. https://doi.org/10.1016/j.ejmech.2022.114317
23. Bhela I.P., Ranza A., Balestrero F.C., Serafini M., Aprile S., Di Martino R.M.C., et al. A Versatile and Sustainable Multicomponent Platform for the Synthesis of Protein Degraders: Proof-of-Concept Application to BRD4-Degrading PROTACs. J. Med Chem. 2022;65(22):15282–15299. https://doi.org/10.1021/acs.jmedchem.2c01218
24. Liu Z., Zhang Y., Xiang Y., Kang X. Small-Molecule PROTACs for Cancer Immunotherapy. Molecules. 2022;27(17):5439. https://doi.org/10.3390/molecules27175439
25. Li J., Chen X., Lu A., Liang C. Targeted protein degradation in cancers: Orthodox PROTACs and beyond. The Innovation. 2023;4(3):100413. https://doi.org/10.1016/j.xinn.2023.100413
26. Yedla P., Babalghith A.O., Andra V.V., Syed R. PROTACs in the Management of Prostate Cancer. Molecules. 2023;28(9):3698. https://doi.org/10.3390/molecules28093698
27. Gao X., Burris Iii H.A., Vuky J., Dreicer R., Sartor A.O., Sternberg C.N., et al. Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2022;40(6_suppl):17–17. https://doi.org/10.1200/JCO.2022.40.6_suppl.017
28. Ha S., Luo G., Xiang H. A Comprehensive Overview of Small-Molecule Androgen Receptor Degraders: Recent Progress and Future Perspectives. J. Med. Chem. 2022;65(24):16128–16154. https://doi.org/10.1021/acs.jmedchem.2c01487
29. Hamilton E.P., Schott A.F., Nanda R., Lu H., Keung C.F., Gedrich R., et al. ARV-471, an estrogen receptor (ER) PROTACdegrader, combined with palbociclib in advanced ER+/human epidermal growth factor receptor 2–negative (HER2-) breast cancer: Phase 1b cohort (part C) of a phase 1/2 study. J. Clin. Oncol. 2022;40(16_suppl):TPS1120–TPS1120. https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS1120
30. Xu H., Ohoka N., Yokoo H., Nemoto K., Ohtsuki T., Matsufuji H., et al. Development of Agonist-Based PROTACs Targeting Liver X Receptor. Front. Chem. 2021;9:674967. https://doi.org/10.3389/fchem.2021.674967
31. Yu F., Cai M., Shao L., Zhang J. Targeting Protein Kinases Degradation by PROTACs. Front. Chem. 2021;9:679120. https://doi.org/10.3389/fchem.2021.679120
32. Dikic I., Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018;19(6):349–364. https://doi.org/10.1038/s41580-018-0003-4
33. Takahashi D., Moriyama J., Nakamura T., Miki E., Takahashi E., Sato A., et al. AUTACs: Cargo-Specific Degraders Using Selective Autophagy. Mol. Cell. 2019;76(5):797–810.e10. https://doi.org/10.1016/j.molcel.2019.09.009
34. Li X., Liu Q., Xie X., Peng C., Pang Q., Liu B., et al. Application of Novel Degraders Employing Autophagy for Expediting Medicinal Research. J. Med. Chem. 2023;66(3):1700–1711. https://doi.org/10.1021/acs.jmedchem.2c01712
35. Li Z., Ma S., Zhang L., Zhang S., Ma Z., Du L., et al. Targeted Protein Degradation Induced by HEMTACs Based on HSP90. J. Med. Chem. 2023;66(1):733–751. https://doi.org/10.1021/acs.jmedchem.2c01648
36. Brown K.J., Seol H., Pillai D.K., Sankoorikal B.J., Formolo C.A., Mac J., et al. The human secretome atlas initiative: implications in health and disease conditions. Biochim. Biophys. Acta. 2013;1834(11):2454–2461. https://doi.org/10.1016/j.bbapap.2013.04.007
37. Banik S.M., Pedram K., Wisnovsky S., Ahn G., Riley N.M., Bertozzi C.R. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584(7820):291–297. https://doi.org/10.1038/s41586-020-2545-9
38. Caianiello D.F., Zhang M., Ray J.D., Howell R.A., Swartzel J.C., Branham E.M.J., et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 2021;17(9):947–953. https://doi.org/10.1038/s41589-021-00851-1
39. Ahn G., Banik S.M., Miller C.L., Riley N.M., Cochran J.R., Bertozzi C.R. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 2021;17(9):937–946. https://doi.org/10.1038/s41589-021-00770-1
40. Wu Y., Lin B., Lu Y., Li L., Deng K., Zhang S., et al. Aptamer-LYTACs for Targeted Degradation of Extracellular and Membrane Proteins. Angew. Chem. Int. Ed. Engl. 2023;62(15):e202218106. https://doi.org/10.1002/anie.202218106
41. Kong L., Meng F., Wu S., Zhou P., Ge R., Liu M., et al. Selective degradation of the p53-R175H oncogenic hotspot mutant by an RNA aptamer-based PROTAC. Clin. Transl. Med. 2023;13(2):e1191. https://doi.org/10.1002/ctm2.1191
42. Dey S.K., Jaffrey S.R. RIBOTACs: Small Molecules Target RNA for Degradation. Cell Chem. Biol. 2019;26(8): 1047–1049. https://doi.org/10.1016/j.chembiol.2019.07.015
43. Childs-Disney J.L., Yang X., Gibaut Q.M.R., Tong Y., Batey R.T., Disney M.D. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 2022;21(10):736–762. https://doi.org/10.1038/s41573-022-00521-4
44. Costales M.G., Suresh B., Vishnu K., Disney M.D. Targeted Degradation of a Hypoxia-Associated Non-coding RNA Enhances the Selectivity of a Small Molecule Interacting with RNA. Cell Chem. Biol. 2019;26(8):1180–1186e5. https://doi.org/10.1016/j.chembiol.2019.04.008
45. Borgelt L., Haacke N., Lampe P., Qiu X., Gasper R., Schiller D., et al. Small-molecule screening of ribonuclease L binders for RNA degradation. Biomed. Pharmacother. 2022;154:113589. https://doi.org/10.1016/j.biopha.2022.113589
46. Ma S., Ji J., Tong Y., Zhu Y., Dou J., Zhang X., et al. Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope. Acta Pharm. Sin. B. 2022;12(7):2990–3005. https://doi.org/10.1016/j.apsb.2022.02.022
47. Gao H., Sun X., Rao Y. PROTAC Technology: Opportunities and Challenges. ACS Med. Chem. Lett. 2020;11(3):237–240. https://doi.org/10.1021/acsmedchemlett.9b00597
48. O’Brien Laramy M.N., Luthra S., Brown M.F., Bartlett D.W. Delivering on the promise of protein degraders. Nat. Rev. Drug Discov. 2023;22(5):410–427. https://doi.org/10.1038/s41573-023-00652-2
49. Cecchini C., Pannilunghi S., Tardy S., Scapozza L. From Conception to Development: Investigating PROTACs Features for Improved Cell Permeability and Successful Protein Degradation. Front. Chem. 2021;9:672267. https://doi.org/10.3389/fchem.2021.672267
50. Liu X., Zhang X., Lv D., Yuan Y., Zheng G., Zhou D. Assays and technologies for developing proteolysis targeting chimera degraders. Future Med. Chem. 2020;12(12):1155–1179. https://doi.org/10.4155/fmc-2020-0073
51. Pfaff P., Samarasinghe K.T.G., Crews C.M., Carreira E.M. Reversible Spatiotemporal Control of Induced Protein Degradation by Bistable PhotoPROTACs. ACS Cent. Sci. 2019;5(10): 1682–1690. https://doi.org/10.1021/acscentsci.9b00713
52. Zeng S., Zhang H., Shen Z., Huang W. Photopharmacology of Proteolysis-Targeting Chimeras: A New Frontier for Drug Discovery. Front. Chem. 2021;9:639176. https://doi.org/10.3389/fchem.2021.639176
53. Liu J., Chen H., Liu Y., Shen Y., Meng F., Kaniskan H.U., et al. Cancer Selective Target Degradation by Folate-Caged PROTACs. J. Am. Chem. Soc. 2021;143(19):7380–7387. https://doi.org/10.1021/jacs.1c00451
54. Gabizon R., Shraga A., Gehrtz P., Livnah E., Shorer Y., Gurwicz N., et al. Efficient Targeted Degradation via Reversible and Irreversible Covalent PROTACs. J. Am. Chem. Soc. 2020;142(27):11734–11742. https://doi.org/10.1021/jacs.9b13907
55. Yuan M., Chu Y., Duan Y. Reversible Covalent PROTACs: Novel and Efficient Targeted Degradation Strategy. Front. Chem. 2021;9:691093. https://doi.org/10.3389/fchem.2021.691093
56. Jin Y., Fan J., Wang R., Wang X., Li N., You Q., et al. Ligation to Scavenging Strategy Enables On-Demand Termination of Targeted Protein Degradation. J. Am. Chem. Soc. 2023;145(13):7218–7229. https://doi.org/10.1021/jacs.2c12809
57. Morreale F.E., Kleine S., Leodolter J., Junker S., Hoi D.M., Ovchinnikov S., et al. BacPROTACs mediate targeted protein degradation in bacteria. Cell. 2022;185(13):2338–2353e18. https://doi.org/10.1016/j.cell.2022.05.009
58. Gopal P., Dick T. Targeted protein degradation in antibacterial drug discovery? Prog. Biophys. Mol. Biol. 2020;152:10–14. https://doi.org/10.1016/j.pbiomolbio.2019.11.005
59. Sarathy J.P., Aldrich C.C., Go M.L., Dick T. PROTAC antibiotics: the time is now. Expert Opin. Drug Discov. 2023;18(4): 363–370. https://doi.org/10.1080/17460441.2023.2178413
60. Venkatesan J., Murugan D., Rangasamy L. A Perspective on Newly Emerging Proteolysis-Targeting Strategies in Antimicrobial Drug Discovery. Antibiotics (Basel). 2022;11(12):1717. https://doi.org/10.3390/antibiotics11121717
61. Espinoza-Chavez R.M., Salerno A., Liuzzi A., Ilari A., Milelli A., Uliassi E., et al. Targeted Protein Degradation for Infectious Diseases: from Basic Biology to Drug Discovery. ACS Bio Med. Chem. Au. 2023;3(1):32–45. https://doi.org/10.1021/acsbiomedchemau.2c00063
62. Desantis J., Goracci L. Proteolysis targeting chimeras in antiviral research. Future Med. Chem. 2022;14(7):459–462. https://doi.org/10.4155/fmc-2022-0005
63. Ma Y., Frutos-Beltran E., Kang D., Pannecouque C., De Clercq E., Menendez-Arias L., et al. Medicinal chemistry strategies for discovering antivirals effective against drugresistant viruses. Chem. Soc. Rev. 2021;50(7):4514–4540. https://doi.org/10.1039/d0cs01084g
64. Reboud-Ravaux M., ElAmri C. COVID-19 Therapies: Protease Inhibitions and Novel Degrader Strategies. Front. Drug Discov. 2022;2. https://doi.org/10.3389/fddsv.2022.892057
65. Li H., Wang S., Ma W., Cheng B., Yi Y., Ma X., et al. Discovery of Pentacyclic Triterpenoid PROTACs as a Class of Effective Hemagglutinin Protein Degraders. J. Med. Chem. 2022;65(10):7154–7169. https://doi.org/10.1021/acs.jmedchem.1c02013
66. Li W., Yang F., Meng L., Sun J., Su Y., Shao L., et al. Synthesis, Structure Activity Relationship and Anti-influenza A Virus Evaluation of Oleanolic Acid-Linear Amino Derivatives. Chem. Pharm. Bull. (Tokyo). 2019;67(11):1201–1207. https://doi.org/10.1248/cpb.c19-00485
67. Xu Z., Liu X., Ma X., Zou W., Chen Q., Chen F., et al. Discovery of oseltamivir-based novel PROTACs as degraders targeting neuraminidase to combat H1N1 influenza virus. Cell Insight. 2022;1(3):100030. https://doi.org/10.1016/j.cellin.2022.100030
68. De Wispelaere M., Du G., Donovan K.A., Zhang T., Eleuteri N.A., Yuan J.C., et al. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat. Commun. 2019;10(1):3468. https://doi.org/10.1038/s41467-019-11429-w
69. Haniff H.S., Tong Y., Liu X., Chen J.L., Suresh B.M., Andrews R.J., et al. Targeting the SARS-CoV-2 RNA Genome with Small Molecule Binders and Ribonuclease Targeting Chimera (RIBOTAC) Degraders. ACS Cent. Sci. 2020;6(10):1713–1721. https://doi.org/10.1021/acscentsci.0c00984
70. Su X., Ma W., Feng D., Cheng B., Wang Q., Guo Z., et al. Efficient Inhibition of SARS-CoV-2 Using Chimeric Antisense Oligonucleotides through RNase L Activation. Angew. Chem. Int. Ed. Engl. 2021;60(40):21662–21667. https://doi.org/10.1002/anie.202105942
71. Zhou Y., Zheng R., Liu D., Liu S., Disoma C., Li S., et al. UBR5 Acts as an Antiviral Host Factor against MERS-CoV via Promoting Ubiquitination and Degradation of ORF4b. J. Virol. 2022;96(17):e0074122. https://doi.org/10.1128/jvi.00741-22
72. Zhao J., Wang J., Pang X., Liu Z., Li Q., Yi D., et al. An antiinfluenza A virus microbial metabolite acts by degrading viral endonuclease PA. Nat. Commun. 2022;13(1):2079. https://doi.org/10.1038/s41467-022-29690-x
73. Wild M., Kicuntod J., Seyler L., Wangen C., Bertzbach L.D., Conradie A.M., et al. Combinatorial Drug Treatments Reveal Promising Anticytomegaloviral Profiles for Clinically Relevant Pharmaceutical Kinase Inhibitors (PKIs). Int. J. Mol. Sci. 2021;22(2):575. https://doi.org/10.3390/ijms22020575
74. Hahn F., Hamilton S.T., Wangen C., Wild M., Kicuntod J., Bruckner N., et al. Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity. Int. J. Mol. Sci. 2021;22(23):12858. https://doi.org/10.3390/ijms222312858
75. Desantis J., Mercorelli B., Celegato M., Croci F., Bazzacco A., Baroni M., et al. Indomethacin-based PROTACs as pan-coronavirus antiviral agents. Eur. J. Med. Chem. 2021;226:113814. https://doi.org/10.1016/j.ejmech.2021.113814
76. Zahid S., Ali Y., Rashid S. Structural-based design of HD-TAC7 PROteolysis TArgeting chimeras (PROTACs) candidate transformations to abrogate SARS-CoV-2 infection. J. Biomol. Struct. Dyn. 2023;41(23):14566–14581. https://doi.org/10.1080/07391102.2023.2183037
77. Shaheer M., Singh R., Sobhia M.E. Protein degradation: a novel computational approach to design protein degrader probes for main protease of SARS-CoV-2. J. Biomol. Struct. Dyn. 2022;40(21):10905–10917. https://doi.org/10.1080/07391102.2021.1953601
Дополнительные файлы
|
1. PROTAC-индуцированная деградация целевого белка убиквитин-протеасомной системой | |
Тема | ||
Тип | Исследовательские инструменты | |
Посмотреть
(117KB)
|
Метаданные ▾ |
- В обзоре изложен принцип технологии PROTAC®, который заключается в конструировании химерной молекулы, состоящей из трех фрагментов. Один фрагмент специфически связывается с биомишенью, другой рекрутирует протеолитическую систему клетки-хозяина, а третий связывает их между собой.
- Описаны направления современного развития технологии, а также возможности и ограничения химерных молекул в борьбе с разными типами инфекционных заболеваний.
Рецензия
Для цитирования:
Захарова М.А., Чудинов М.В. Технология PROTAC® и перспективы ее применения в борьбе с инфекциями. Тонкие химические технологии. 2024;19(3):214-231. https://doi.org/10.32362/2410-6593-2024-19-3-214-231. EDN: FUJWGT
For citation:
Zakharova M.A., Chudinov M.V. PROTAC® technology and potential for its application in infection control. Fine Chemical Technologies. 2024;19(3):214-231. https://doi.org/10.32362/2410-6593-2024-19-3-214-231. EDN: FUJWGT