Preview

Fine Chemical Technologies

Advanced search

Emergent properties of magnetic ions and nanoparticles in micellar solutions of surfactants: Use in fine technologies

https://doi.org/10.32362/2410-6593-2023-18-5-471-481

Abstract

Objectives. To establish expected emergent (unexpected) properties of magnetic materials when obtained in aqueous micellar solutions of surfactants (aqueous quantum materials), and their use in fine technologies.

Methods. Chemical synthesis of magnetic nanoparticles in aqueous micellar solutions of surfactants of various nature. Characterization of magnetic solutions and nanoparticles by magnetic measurements, spectroscopy, diffractometry, small-angle X-ray diffraction, scanning probe microscopy, and others.

Results. The term “water quantum material” refers to materials (micellar solutions) whose properties are mainly determined by the nuclear quantum effect on macroscopic scales (emergent property). Micellar solutions exhibit phenomena and functionality not always consistent with the classical theory of micellization. The article presents in detail the experimental results that suggest the manifestation of the emergent properties of magnetic materials obtained in aqueous micellar solutions of surfactants. In particular, Gd3+ ions in an aqueous micellar solution of sodium dodecyl sulfate exhibit paramagnetic properties, possibly indicating their random arrangement in solution contrary to the classical theory of micellization with an ordered adsorption layer on micelles. Hybrid Pt–Gd nanoparticles are formed in a quantum material with cetylpyridinium chloride as a matrix, although Gd3+ ions must be repelled by CP+ ions on micelles. Nanosized powders of cobalt ferrite and nickel ferrite obtained in a micellar solution of sodium dodecyl sulfate have superparamagnetic properties, although the presence of their precursor ions in the adsorption layer in classical micelles should lead to ferromagnetic properties.

Conclusions. The synthesis of nanoparticles in a quantum material opens up the possibility of reducing ions of different signs in one stage during the processing of metallurgy waste, in order to obtain nanoparticles of various metals and their composites. Magnetic nanoparticles obtained in a quantum surfactant material self-assemble on various substrates, enabling the creation of materials whose residual magnetization and coercive field can be controlled at room temperatures.

About the Authors

Yu. A. Mirgorod
Southwest State University
Russian Federation

Yuri A. Mirgorod - Dr. Sci. (Chem.), Leading Researcher, Regional Center for Nanotechnology. . Scopus Author ID 87243112000, ResearcherID P-7243-2015.

94, 50 Let Oktyabrya ul., Kursk, 305040


Competing Interests:

The authors declare no conflicts of interest



N. A. Borsch
Southwest State University
Russian Federation

Nikolay A. Borsch - Cand. Sci. (Chem.), Senior Researcher, Regional Center of Nanotechnology. Scopus Author ID 55975582000.

94, 50 Let Oktyabrya ul., Kursk, 305040


Competing Interests:

The authors declare no conflicts of interest



A. M. Storozhenko
Southwest State University
Russian Federation

Anastasia M. Storozhenko - Cand. Sci. (Phys.-Math.), Senior Researcher, Regional Center of Nanotechnology. Scopus Author ID 36440356800, ResearcherID D-6103-2013.

94, 50 Let Oktyabrya ul., Kursk, 305040


Competing Interests:

The authors declare no conflicts of interest



L. S. Ageeva
Southwest State University
Russian Federation

Liliya S. Ageeva - Cand. Sci. (Chem.), Researcher, Regional Center of Nanotechnology, Scopus Author ID 57016621700.

94, 50 Let Oktyabrya ul., Kursk, 305040


Competing Interests:

The authors declare no conflicts of interest



References

1. Hatakeyama W., Sanchez T.J., Rowe M.D., et al. Synthesis of Gadolinium Nanoscale Metal−Organic Framework with Hydrotropes: Manipulation of Particle Size and Magnetic Resonance Imaging Capability. ACS Appl. Mater. Interfaces. 2011;3(5):1502–1510. https://doi.org/10.1021/am200075q

2. Lu A.H., Salabas E.L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew. Chem. 2007;46(8):1222–1244. https://doi.org/10.1002/anie.200602866

3. Leem G., Sarangi S., Zhang S., et al. SurfactantControlled Size and Shape Evolution of Magnetic Nanoparticles. Crystal. Growth Des. 2009;9(1):32–34. https://doi.org/10.1021/cg8009833

4. Shamim N., Hong L., Hidajat K., et al. Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: Preparation and characterization. Colloids Surf. B: Biointerfaces. 2007;55(1):51–58. http://doi.org/10.1016/j.colsurfb.2006.11.007

5. Holmberg K., Jönsson B., Kronberg B., et al. Surfactants and Polymers in Aqueous Solutions. UK: Wiley; 2003. 568 p. ISBN 978-0-470-85642-0 6. Mirgorod Yu.A., Chekadanov A.S., Yanushkevich A.M., et al. Magnetic properties of Gd (III) in aqueous micellar systems. Magnetohydrodynamics. 2018;54(3):299–308. https://doi.org/10.22364/mhd.54.3.9

6. Mirgorod Yu.A., Borshch N.A. Method of Producing nanoparticles of metal or hybrides of nanoparticles of metals: RF Pat. 2369466 RU. Publ. 10.10.2009 (in Russ.).

7. Mirgorod Yu.A., Borshch N.A., Borodina V.G., Yurkov G.Yu. Production and characterization of cotton fabric modified with copper nanoparticles. Khimicheskaya promyshlennost’ = Chemical Industry. 2012;89(6):310–316 (in Russ.).

8. Vorobiova I.G., Borshch N.A., Mirgorod Yu.A. The structure of Mn and Co nanoparticles obtained in direct surfactant micelles. Journal of Nanoand Electronic Physics. 2017;9(5):05036-1–05036-4. http://doi.org/10.21272/jnep.9(5).05036

9. Geesink H.J.H., Jerman I., Meijer D.K.F. Water, the Cradle of Life via its Coherent Quantum Frequencies. Water. 2020;(11):78–108. http://doi.org/10.14294/WATER.2020.1

10. Krause W. Contrast Agents I: Magnetic Resonance Imaging: Pt. 1. Berlin, Heidelberg: Springer; 2002. 249 p.

11. Salt C., Lennox A.J., Takagaki M. Boron and gadolinium neutron capture therapy. Rus. Chem. Bull. 2004;53(9):1871–1888. https://doi.org/10.1007/s11172-0050045-6

12. Tokura Y., Kawasaki M., Nagaosa N. Emergent functions of quantum materials. Nature Phys. 2017;13:1056–1068. https://doi.org/10.1038/nphys4274

13. Mirgorod Yu.A., Emelyanov S.G., Pugachesky M.A. Method for Measuring the Parameters of Liquid-Liquid Phase Transition and Micellization: RF Pat. 2730433 RU. Publ. 08.21.2020 (in Russ.).

14. Mirgorod Yu.A. Method for Measuring the Parameters of the Liquid-Liquid Phase Transition: RF Pat. 2720399 RU. Publ. 04.29.2020 (in Russ.).

15. Mirgorod Yu.A. Quantum nuclear effect in aqueous ionic surfactant and polyelectrolytes solutions. In: Proc. Bio-Inspired Nanomaterials – Nature Conferences (Nov. 14–15, 2021). Seoul, South Korea. http://doi.org/10.13140/RG.2.2.32364.08325

16. Mirgorod Yu.A. Strongly correlated electronic states in aqueous micellar surfactant systems. Preprint. 2021. https://doi.org/10.21203/rs.3.rs-660013/v1

17. Mirgorod Yu.A., Borshch N.A., Reutov A.A., Yurkov G.Yu., Fedosyuk V.M. Synthesis of gadoliniumbased nanoparticles in a system of direct surfactant micelles and study of their magnetic properties. Russ. J. Appl. Chem. 2009;82(8):1357–1363. http://doi.org/10.1134/s1070427209080072

18. Harada M., Saijo K., Sakamotoet N., et al. Smallangle X-ray scattering study of metal nanoparticles prepared by photoreduction in aqueous solutions of sodium dodecyl sulfate. Colloids and Surfaces A: Physicochem. Eng. aspects. 2009;345(1–3):41–50. http://doi.org/10.1016/j.colsurfa.2009.04.015

19. Mirgorod Yu.A., Borsch N.A., Fedosyuk V.M., Yurkov G.Yu. The structure and magnetic properties of cobalt ferrite nanoparticles synthesized in a system of direct micelles of amphiphiles by means of ion flotoextraction. Russ. J. Phys. Chem. A. 2012;86(3):418–423. https://doi.org/10.1134/S0036024412030211

20. Mirgorod Yu.A., Borsch N.A., Fedosyuk V.M., Yurkov G.Yu. Magnetic properties of nickel ferrite nanoparticles prepared using flotation extraction. Inorg. Mater. 2013;49(1):109–114. https://doi.org/10.1134/s0020168512110064

21. Hansen M.F., Mørup S.J. Estimation of blocking temperatures from ZFC/FC curves. J. Magn. Magn. Mater. 1999;203:214–216. https://doi.org/10.1016/s03048853(99)00238-3

22. Mirgorod Yu.A., Borsch N.A., Yurkov G.Yu. Preparation of nanomaterials from aqueous solutions imitating the hydrometallurgy waste. Russ. J. Appl. Chem. 2011;84(8):1314–1318. http://doi.org/10.1134/s1070427211080039

23. Mirgorod Yu.A., Emelyanov S.G. Integrated technology for production of nanomaterials from poor ore and waste. J. Min. Sci. 2015;51(1):164–173. http://doi.org/10.1134/S1062739115010226

24. Matt B., Pondman K.М., Asshoff S.J., et al. Soft Magnets from the Self-Organization of Magnetic Nanoparticles in Twisted Liquid Crystals. Angew. Chem. Int Ed. 2014;53(46):12446–12450. https://doi.org/10.1002/anie.201404312

25. Lisiecki I. From the Co Nanocrystals to Their Self-Organizations: Towards Ferromagnetism at Room Temperature. Acta Phys. Polonica. A. 2012;121(2):426–433. URL: http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z2p58.pdf

26. Darling S.B., Yufa N.A., Cisse A.L., et al. SelfOrganization of FePt Nanoparticles on Photochemically Modified Diblock Copolymer Templates. Adv. Mater. 2005;17(20):2446–2450. https://doi.org/10.1002/adma.200500960

27. Rusanov A.I., Nekrasov A.G. One more extreme near the critical micelle concentration: optical activity. Langmuir. 2010;26(17):13767–13769. https://doi.org/10.1021/la102514a

28. Farinato R.S., Rowell R.L. Transient light scattering in aqueous surfactant systems. J. Colloid and Interface Sci. 1978;66(3):483–491. http://doi.org/10.1016/00219797(78)90069-3

29. Yusof N.S.M. The effect of sonication on the ion exchange constant, KXBr of CTABr/chlorobenzoates micellar systems. Ultrason. Sonochem. 2021;71:105360. https://doi.org/10.1016/j.ultsonch.2020.105360

30. Maestro L.M., Marqués M.I., Camarillo E., et al. On the Existence of Two States in Liquid Water: Impact on Biological and Nanoscopic Systems. Int. J. Nanotech. 2016;13(8–9):667–677. http://doi.org/10.1504/IJNT.2016.079670

31. Fan H., Leve E.W., Scullin C., et al. Surfactant-Assisted Synthesis of Water-Soluble and Biocompatible Semiconductor Quantum Dot Micelles. Nano Lett. 2005;5(4):645–648. https://doi.org/10.1021/nl050017l

32. Rusanov A.I., Krotov V.V., Nekrasov A.G. Extremes of some foam properties and elasticity of thin foam films near the critical micelle concentration. Langmuir. 2004;20(4):1511–1516. https://doi.org/10.1021/la0358623


Supplementary files

1. Lamellar micelle in the GA–water–n-undecane system
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾
  • The article presents in detail the experimental results that suggest the manifestation of the emergent properties of magnetic materials obtained in aqueous micellar solutions of surfactants.
  • In particular, Gd3+ ions in an aqueous micellar solution of sodium dodecyl sulfate exhibit paramagnetic properties, possibly indicating their random arrangement in solution contrary to the classical theory of micellization with an ordered adsorption layer on micelles.
  • Hybrid Pt–Gd nanoparticles are formed in a quantum material with cetylpyridinium chloride as a matrix, although Gd3+ ions must be repelled by CP+ ions on micelles.
  • Nanosized powders of cobalt ferrite and nickel ferrite obtained in a micellar solution of sodium dodecyl sulfate have superparamagnetic properties, although the presence of their precursor ions in the adsorption layer in classical micelles should lead to ferromagnetic properties.

Review

For citations:


Mirgorod Yu.A., Borsch N.A., Storozhenko A.M., Ageeva L.S. Emergent properties of magnetic ions and nanoparticles in micellar solutions of surfactants: Use in fine technologies. Fine Chemical Technologies. 2023;18(5):471-481. https://doi.org/10.32362/2410-6593-2023-18-5-471-481

Views: 437


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)