Preview

Fine Chemical Technologies

Advanced search

Reduction of hydrogen absorption into materials of membrane electrode assemblies in hydrogen generators

https://doi.org/10.32362/2410-6593-2023-18-5-461-470

Abstract

Objectives. To investigate the possibility of preventing hydrogen absorption into the functional structural materials of hydrogen-generating membrane electrode assemblies based on porous nickel, carbon black, and reduced graphene oxide with platinum–nickel and palladium–nickel nanoparticles.

Methods. The hydrogen absorption into materials of membrane electrode assemblies of alkaline electrolyzers was evaluated using an electrolyzer with variable temperature, reagent feed rate, and gas content.

Results. The study established the need to use reduced graphene oxide, in order to reduce hydrogen absorption and degradation of hydrogen-generating membrane electrode assemblies.

Conclusions. The service life test results and performance of the designed variants of prototypes of membrane electrode assemblies with nanostructured electrodes based on reduced graphene oxide, preventing hydrogen absorption into functional materials and their degradation, demonstrated the creation of hydrogen generators with high energy efficiency shows potential.

About the Authors

M. V. Lebedeva
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Marina V. Lebedeva - Cand. Sci. (Eng.), Associate Professor, Ya.K. Syrkin Department of Physical Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies. Scopus ID 57197593059, Research ID P-3661-2017.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



A. V. Ragutkin
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Alexander V. Ragutkin - Cand. Sci. (Eng.), Vice-Rector for Innovative Development. Scopus ID 56871217700.

78, Vernadskogo pr., Moscow, 119454


Competing Interests:

The authors declare no conflicts of interest



I. M. Sidorov
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Ivan M. Sidorov - Cand. Sci. (Eng.), Head of the IT Solutions Development Department of the Mobile Solutions Engineering Center.

78, Vernadskogo pr., Moscow, 119454


Competing Interests:

The authors declare no conflicts of interest



N. A. Yashtulov
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Nikolay A. Yashtulov - Dr. Sci. (Eng.), Professor, Head of the S.S. Voyutsky Department of Nanoscale Systems and Surface Phenomena, M.V. Lomonosov Institute of Fine Chemical Technologies. . Scopus ID 6507694451, Research ID U-8825-2017.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



References

1. Burton N.A., Padilla R.V., Rose A., Habibullah H. Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sust. Energ. Rev. 2021;135:110255. https://doi.org/10.1016/j.rser.2020.110255

2. Antropov A.P., Ragutkin A.V., Lebedeva M.V., Yashtulov N.A. Nanocomposite micro-power alternative power energy sources for electronic technology. Therm. Eng. 2021;68(1):17–24. https://doi.org/10.1134/S0040601521010109 [Original Russian Text: Antropov A.P., Ragutkin A.V., Lebedeva M.V., Yashtulov N.A. Nanocomposite micropower alternative power energy sources for electronic technology. Teploenergetika. 2021;68(1):21–29 (in Russ.). https://doi.org/10.1134/S0040363621010100 ]

3. Zeng K., Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010;36(3):307–326. https://doi.org/10.1016/j.pecs.2009.11.002

4. Haverkort J.W., Rajaei H. Electro-osmotic flow and the limiting current in alkaline water electrolysis. J. Power Sources Adv. 2020;6:100034. https://doi.org/10.1016/j.powera.2020.100034

5. Smirnov S.E., Yashtulov N.A., Putsylov I.А., Smirnov S.S., Lebedeva M.V. Polysulfone Copolymer as Polymer Electrolyte for Alkaline Fuel Cell and Li-Ion Battery Applications. J. Eng. Appl. Sci. 2019;14(9):2928–2935. https://doi.org/10.36478/jeasci.2019.2928.2935

6. Yashtulov N.A., Lebedeva M.V., Patrikeev L.N., Zaitcev N.K. New polymer-graphene nanocomposite electrodes with platinum-palladium nanoparticles for chemical power sources. eXPRESS Polym. Lett. 2019;13(8):739–748. https://doi.org/10.3144/expresspolymlett.2019.62

7. Yashtulov N.A., Lebedeva M.V. Hydrogen energy renewable current sources. Russ. Technol. J. 2017;5(3):58–73 (in Russ.). https://doi.org/10.32362/2500-316X-2017-5-3-58-73

8. Spiridonov N.V., Ivashko V.S., Kudina A.V., Kurash V.V. Hydrogen absorption and structure destruction of machinery and mechanism steel parts in hydrogen-containing medium. Nauka i tekhnika = Science & Technique. 2014;(2):72–77 (in Russ.).

9. Delvaux A., Lumbeeck G., Idrissi H., Proost J. Effect of microstructure and internal stress on hydrogen absorption into Ni thin film electrodes during alkaline water electrolysis. Electrochimica Acta. 2020;340:135970. https://doi.org/10.1016/j.electacta.2020.135970

10. Jiang X.G., Zhang Y.P., Song C., Xie Y.C., Liu T.K., Deng C.M., Zhang N.N. Performance of nickel electrode for alkaline water electrolysis prepared by high pressure cold spray. Int. J. Hydrogen Energy. 2020;45(58):33007–33015. https://doi.org/10.1016/j.ijhydene.2020.09.022

11. Mayerhöfer B., McLaughlin D., Böhm T., Hegelheimer M., Seeberger D., Thiele S. Bipolar Membrane Electrode Assemblies for Water Electrolysis. ACS Appl. Energy Mater. 2020;3(10):9635–9644. https://doi.org/10.1021/acsaem.0c01127

12. Liu Z., Sajjad S.D., Gao Y., Yang H., Kaczur J.J., Masel R.I. The effect of membrane on an alkaline water electrolyzer. Int. J. Hydrogen Energy. 2017;42(50):29661–29665. https://doi.org/10.1016/j.ijhydene.2017.10.050

13. López-Fernández E., Gil-Rostra J., Espinós J.P., González-Elipe A.R., de Lucas Consuegra A., Yubero F. Chemistry and Electrocatalytic Activity of Nanostructured Nickel Electrodes for Water Electrolysis. ACS Catal. 2020;10(11):6159–6170. https://doi.org/10.1021/acscatal.0c00856

14. Koj M., Qian J., Turek T. Novel alkaline water electrolysis with nickel-iron gas diffusion electrode for oxygen evolution. Int. J. Hydrogen Energy. 2019;44(57):29862–29875. https://doi.org/10.1016/j.ijhydene.2019.09.122

15. Le Formal F., Yerly L., Potapova Mensi E., Da Costa X.P., Boudoire F., Guijarro N., Spodaryk M., Züttel A., Sivula K. Influence of Composition on Performance in Metallic Iron–Nickel–Cobalt Ternary Anodes for Alkaline Water Electrolysis. ACS Catal. 2020;10(20):12139–12147. https://doi.org/10.1021/acscatal.0c03523

16. Rauscher T., Bernäcker C.I., Mühle U., Kieback B., Röntzsch L. The effect of Fe as constituent in Ni-base alloys on the oxygen evolution reaction in alkaline solutions at high current densities. Int. J. Hydrogen Energy. 2019;44(13):6392–6402. https://doi.org/10.1016/j.ijhydene.2019.01.182

17. Yashtulov N.A., Ragutkin A.V., Lebedeva M.V., Smirnov S.S. Functional characteristics of electrode materials based on porous silicon for micro-power current sources. Tsvetnye Metally. 2017;(5):58–63 (in Russ.). https://doi.org/10.17580/tsm.2017.05.09

18. Wang S., Zou X., Lu Y., Rao S., Xie X., Pang Z. Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution. Int. J. Hydrogen Energy. 2018;43(33):15673–15686. https://doi.org/10.1016/j.ijhydene.2018.06.188

19. Kraglund M.R., Aili D., Jankova K., Christensen E., Li Q., Jensen J.O. Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations. J. Electrochem. Soc. 2016;163(11):F3125. https://doi.org/10.1149/2.0161611jes

20. Sulka G.D., Brzozka A., Liu L. Fabrication of diametermodulated and ultrathin porous nanowires in anodic aluminum oxide templates. Electrochimica Acta. 2011;56(14):4972–4979. https://doi.org/10.1016/j.electacta.2011.03.126

21. Antropov A.P., Zaitsev N.K., Ryabkov E.D., Yashtulov N.A., Mudrakova P.N. Manufacturing of nanopillar (ultra-dispersed) catalytically active materials through chemical engineering. Tonk. Khim. Technol. = Fine Chem. Technol. 2021;16(2):105–112 https://doi.org/10.32362/2410-6593-2021-16-2-105-112

22. Lebedeva M.V., Antropov A.P., Ragutkin A.V., Zaitsev N.K., Yashtulov N.A. Development of electrode nanomaterials for alkaline water electrolysis. Theor. Found. Chem. Eng. 2021;55(5):952–961. https://doi.org/10.1134/S0040579521050262 [Original Russian Text: Lebedeva M.V., Antropov A.P., Ragutkin A.V., Zaitsev N.K., Yashtulov N.A. Development of electrode nanomaterials for alkaline water electrolysis. Teoreticheskie Osnovy Khimicheskoi Tekhnologii. 2021;55(5):642–651 (in Russ.). https://doi.org/10.31857/s0040357121050079 ]

23. Stavrovskii M.E., Sidorov M.I., Albagachiev A.Yu., Ragutkin A.V., Lukashev P.E. O roli vodoroda v protsessakh razrusheniya materialov (On the Role of Hydrogen in the Processes of Destruction of Materials). Moscow: Eko-Press; 2020. 208 p. (in Russ.). ISBN 978-5-6044018-7-3

24. Lukashev E.A., Stavrovskii M.E., Sidorov M.I., Emelyanov S.G., Poserenin S.P. Model of topochemical kinetics of interaction of materials. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technology. 2016;2(19):9–20 (in Russ.).

25. Vagin A.V., Sidorov M.I., Albagachiev A.Y., Stavrovskii M.E. Improving the life of artillery systems. Russ. Engin. Res. 2017;37(3):211–217. https://doi.org/10.3103/s1068798X17030212

26. Lebedeva M.V., Antropov A.P., Ragutkin A.V., Yashtulov N.A. Platinum nanoelectrocatalysts for hydrogen-air energy sources. Computational Nanotechnology. 2020;7(1):26–29 (in Russ.). https://doi.org/10.33693/2313-223X-2020-7-1-26-29

27. Damaskin B.B., Petri O.A., Cirlina G.A. Elektrokhimiya (Electrochemistry). St. Petersburg: Lan; 2015. 672 p. (in Russ.). ISBN 978-5-8114-1878-7

28. Krylova K.A., Baimova J.A., Mulyukov R.R. Effect of deformation on dehydrogenation mechanisms of crumpled graphene: molecular dynamics simulation. Lett. Mater. 2019;9(1):81–85. https://doi.org/10.22226/2410-3535-20191-81-85

29. Chuah C.Y., Lee J., Bae T.-H. Graphene-based Membranes for H2 Separation: Recent Progress and Future Perspective. Membranes. 2020;10(11):336. https://doi.org/10.3390/membranes10110336


Supplementary files

1. Scheme of membrane electrode assembly
Subject
Type Исследовательские инструменты
View (103KB)    
Indexing metadata ▾
  • The possibility of preventing hydrogen absorption into the functional structural materials of hydrogen-generating membrane electrode assemblies based on porous nickel, carbon black, and reduced graphene oxide with platinum–nickel and palladium–nickel nanoparticles was investigated.
  • The study established the need to use reduced graphene oxide, in order to reduce hydrogen absorption and degradation of hydrogen-generating membrane electrode assemblies.

Review

For citations:


Lebedeva M.V., Ragutkin A.V., Sidorov I.M., Yashtulov N.A. Reduction of hydrogen absorption into materials of membrane electrode assemblies in hydrogen generators. Fine Chemical Technologies. 2023;18(5):461-470. https://doi.org/10.32362/2410-6593-2023-18-5-461-470

Views: 350


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)