Preview

Fine Chemical Technologies

Advanced search

The effects of physical treatment on physicochemical and biological properties of water and aqueous solutions

https://doi.org/10.32362/2410-6593-2023-18-5-426-445

Abstract

Objectives. Changes to the properties of water caused by factors such as pressure or temperature, can only be explained by its structural changes. Scientists study changes to the properties of water due to various physical stimuli only without the addition of any substances. Examples of stimuli are acoustic exposure, thermal exposure, pressure variation, shaking, intensive vibration treatment followed by dilutions, vortexing, bubble generation, inter alia.

The aim of the present review article is to summarize the available data on how the above processes affect the physicochemical and biological properties of water and aqueous solutions.

Results. It has been shown that heating makes water less compressible and decreases air solubility in water, while cooling enhances its viscosity. Acoustic exposure makes the structure of water become coarse-grained, followed by an increase the number of large clusters, pH and temperature inside a cavitation bubble. High pressure enhances the viscosity, self-diffusion, and compressibility of water. For bubble processed water, there are changes in the spin-spin and spin-lattice relaxation times. Reactive oxygen species are formed, as well as increased solubility of gases in liquids and reduced friction. Vortex process technology causes an increase of electrical conductivity of water and reduced viscosity. Intensive vibration treatment and dilution processes result in changes in electrical conductivity of water, dissolved gas concentration, ultrasonic wave velocity, рН, surface tension, dielectric constant, and spectral response. There is also data to support the biological effects of different types of physical treatment of solutions.

Conclusions. This review shows that physical treatment of water can induce changes both in physicochemical and biological properties of water and aqueous solutions.

About the Authors

E. S. Don
Materia Medica Holding
Russian Federation

Elena S. Don - Cand. Sci. (Biol.), Senior Researcher, Laboratory of Physiologically Active Substances, Institute of General Pathology and Pathophysiology; Scientific Project Manager, MMH. Scopus Author ID 57070128700, ResearсherID L-6765-2018.

8, Baltiyskaya ul., Moscow 125315; 47-1, Trifonovskaya ul., Moscow, 129272


Competing Interests:

are employees of Materia Medica Holding (fully or partly). Employees of Materia Medica Holding made a decision to publish the work and took part in the manuscript writing. Materia Medica Holding produces the drugs based on the technology of serial dilution process combined with external treatment



G. O. Stepanov
Materia Medica Holding
Russian Federation

German O. Stepanov - Cand. Sci. (Biol.), Senior Researcher, MMH. Scopus Author ID 15046034100.

47-1, Trifonovskaya ul., Moscow, 129272


Competing Interests:

are employees of Materia Medica Holding (fully or partly). Employees of Materia Medica Holding made a decision to publish the work and took part in the manuscript writing. Materia Medica Holding produces the drugs based on the technology of serial dilution process combined with external treatment



S. A. Tarasov
Materia Medica Holding; Institute of General Pathology and Pathophysiology
Russian Federation

Sergey A. Tarasov - Dr. Sci. (Medicine), Leading Researcher, Laboratory of Physiologically Active Substances, Institute of General Pathology and Pathophysiology; Director of Research & Development Department, MMH. Scopus Author ID 7005125924, ResearcherID X-2509-2018.

8, Baltiyskaya ul., Moscow,125315; 47-1, Trifonovskaya ul., Moscow, 129272


Competing Interests:

are employees of Materia Medica Holding (fully or partly). Employees of Materia Medica Holding made a decision to publish the work and took part in the manuscript writing. Materia Medica Holding produces the drugs based on the technology of serial dilution process combined with external treatment



References

1. Bruskov V.I., Chernikov A.V., Ivanov V.E., Karmanova E.E., Gudkov C.V. Formation of the Reactive Species of Oxygen, Nitrogen, and Carbon Dioxide in Aqueous Solutions under Physical Impacts. Phys. Wave Phen. 2020;28(2):103–106. https://doi.org/10.3103/S1541308X2002003X

2. Shcherbakov I. Specific features of the concentration dependences of impurities in condensed media. Phys. Wave Phen. 2020;28(2):83–87. http://doi.org/10.3103/s1541308X20020156

3. Gudkov S.V., Penkov N.V., Baimler I.V., Lyakhov G.A., Pustovoy V.I., Simakin A.V., Sarimov R.M., Scherbakov I.A. Effect of Mechanical Shaking on the Physicochemical Properties of Aqueous Solutions. Int. J. Mol. Sci. 2020;21(21):8033. https://doi.org/10.3390/ijms21218033

4. Gudkov S.V., Lyakhov G.A., Pustovoy V.I., Shcherbakov I.A. Influence of Mechanical Effects on the Hydrogen Peroxide Concentration in Aqueous Solutions. Phys. Wave. Phen. 2019;27(2):141–144. http://doi.org/10.3103/S1541308X19020092

5. Baymler I.V., Gudkov S.V., Sarimov R.M., Simakina A.V., Shcherbakov I.A. Concentration Dependences of Molecular Oxygen and Hydrogen in Aqueous Solutions. Dokl. Phys. 2020;65(1):5–7. https://doi.org/10.1134/S1028335820010085

6. Lauterborn W. High‐speed photography of laser‐induced breakdown in liquids. Appl. Phys. Lett. 1972;21(1):27–29. https://doi.org/10.1063/1.1654204

7. Bunkin N.F., Bunkin F.V. The new concepts in the optical breakdown of transparent liquids. Laser Physics.1993;3(1):63–78. URL: https://www.researchgate.net/publication/298926340_The_New_Concepts_in_the_Optical_Breakdown_of_Transparent_Liquids

8. Mai-Prochnow A., Zhou R., Zhang T., Ostrikov K.K., Mugunthan S., Rice S.A., Cullen P.J. Interactions of plasmaactivated water with biofilms: inactivation, dispersal effects and mechanisms of action. NPJ Biofilms Microbiomes. 2021;7(1):11. https://doi.org/10.1038/s41522-020-00180-6

9. Zhao Y.M., Patange A., Sun D.W., Tiwari B. Plasmaactivated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr. Rev. Food Sci. Food Saf. 2020;19(6):3951–3979. https://doi.org/10.1111/1541-4337.12644

10. Shcherbakov I. Influence of External Impacts on the Properties of Aqueous Solutions. Phys. Wave Phen. 2021;29(2):89–93. http://doi.org/10.3103/S1541308X21020114

11. Brini E., Fennell C.J., Fernandez-Serra M., Hribar-Lee B., Lukšič M., Dill K.A. How Water’s Properties Are Encoded in Its Molecular Structure and Energies. Chem. Rev. 2017;117(19):12385–12414. https://doi.org/10.1021/acs.chemrev.7b00259

12. Geesink G.J.H., Jerman I., Meijer D.K.F. Water, The Cradle of Life via its Coherent Quantum Frequencies. Water. 2020;11:78–108. http://dx.doi.org/10.14294/WATER.2020.1

13. Wang L.P., Head-Gordon T., Ponder J.W., Ren P., Chodera J.D., Eastman P.K., Pande V.S. Systematic Improvement of a Classical Molecular Model of Water. J. Phys. Chem. B. 2013; 117:9956–9972. https://doi.org/10.1021/jp403802c

14. Plumridge T.H., Waigh R.D. Water structure theory and some implications for drug design. J. Pharm. Pharmacol. 2002;54(9):1155–1179. https://doi.org/10.1211/002235702320402008

15. Cisneros G.A., Wikfeldt K.T., Ojamäe L., Lu J., Xu Y., Torabifard H., Bartók A.P., Csányi G., Molinero V., Paesani F. Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions. Chem. Rev. 2016;116(3):7501–7528. https://doi.org/10.1021/acs.chemrev.5b00644

16. Bellissent-funel M-C., Hassanali A., Havenith M., Henchman R., Pohl P., Sterpone F., Van Der Spoel D., Xu Y., Garcia A.E. Water Determines the Structure and Dynamics of Proteins. Chem. Rev. 2016;116(13):7673–7697. https://doi.org/10.1021/acs.chemrev.5b00664

17. Tan D., Garcia F. Main group mechanochemistry: from curiosity to established protocols. Chem. Soc. Rev. 2019;48(8):2274–2292. https://doi.org/10.1039/c7cs00813a

18. Howard J.L., Cao Q., Browne D.L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem. Sci. 2018;9(12):3080–3094. https://doi.org/10.1039/c7sc05371a

19. Do J.L., Fris T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017;3(1):13–19. https://doi.org/10.1021/acscentsci.6b00277

20. Andersen J., Mack J. Mechanochemistry and organic synthesis: from mystical to practical. Green Chem. 2018;20(7):1435–1443. http://doi.org/10.1039/C7GC03797J

21. Roy R., Tiller W.A., Bell I., Hoover M.R. The Structure Of Liquid Water; Novel Insights From Materials Research; Potential Relevance To Homeopathy. Materials Research Innovations. 2005;9(4):98–103. https://doi.org/10.1080/14328917.2005.11784911

22. Wu T., Brant J.A. Magnetic Field Effects on pH and Electrical Conductivity: Implications for Water and Wastewater Treatment. Environmental Engineering Science. 2020;37(11):717–727. https://doi.org/10.1089/ees.2020.0182

23. Wang Y., Wei H., Li Z. Effect of magnetic field on the physical properties of water. Results in Physics. 2018;8:261–267. https://doi.org/10.1016/j.rinp.2017.12.022

24. Chibowski E., Szcześ A., Hołysz L. Influence of Magnetic Field on Evaporation Rate and Surface Tension of Water. Colloids and Interfaces. 2018;2(4):68. https://doi.org/10.3390/colloids2040068

25. Sronsri C., U-yen K., Sittipol W. Analyses of vibrational spectroscopy, thermal property and salt solubility of magnetized water. J. Mol. Liquids. 2021;323:114613. https://doi.org/10.1016/j.molliq.2020.114613

26. Bernal J.D., Fowler R.H. A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions. J. Chem. Phys. 1933;1:515–548. https://doi.org/10.1063/1.1749327

27. Meyer H.H. Über den Einfluß der Temperatur und gelöster Elektrolyte auf das monochromatische Debye‐Scherrer‐Diagramm des Wassers. Ann. Phys. 1930;397(6):701–734. https://doi.org/10.1002/andp.19303970603

28. Stewart G.W. The Cybotactic (Molecular Group) Condition in Liquids; the Nature of the Association of Octyl Alcohol Molecules. Phys. Rev. 1930;35(7):726–732. https://doi.org/10.1103/physrev.35.726

29. Amaldi E. Über den Ramaneffekt des CO. Zeitschrift für Physik. 1932;79(7–8):492–494. https://doi.org/10.1007/BF01342171

30. Omta A.W., Kropman M.F., Woutersen S., Bakker H.J. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science. 2003;301(5631):347–349. https://doi.org/10.1126/science.1084801

31. Fecko C.J., Eaves J.D., Loparo J.J., Tokmakoff A., Geissler P.L. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science. 2003;301(5640):1698–1702. http://doi.org/10.1126/science.1087251

32. Smith J.D., Smith J.D., Cappa C.D., Wilson K.R., Messer B.M., Cohen R.C., Saykally R.J. Energetics of hydrogen bond network rearrangements in liquid water. Science. 2004;306:851–853. https://doi.org/10.1126/science.1102560

33. Stiopkin I.V., Weeraman C., Pieniazek P.A., Shalhout F.Y., Skinner J.L., Benderskii A.V.: Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature. 2011;474(7350):192–195. https://doi.org/10.1038/nature10173

34. Richardson J.O., Pérez C., Lobsiger S., Reid A.A., Temelso B., Shields G.C., Kisiel Z., Wales D.J., Pate B.H., Althorpe S.C. Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science. 2016;351(62–79):1310–1313. https://doi.org/10.1126/science.aae0012

35. Röntgen W.C. Ueber die Constitution des flüssigen Wassers. Ann. Phys. 1892;281(1):91–97. https://doi.org/10.1002/andp.18922810108

36. Pauling L. The Nature of the Chemical Bond. 2nd ed. Ithaca, NY: Cornell University Press; 1939. 663 p.

37. Samoilov О.Y. Structure of Aqueous Solutions of Electrolytes and Hydration of Ions. NY: Consultants Bureau; 1965. 185 p.

38. Bushuev Y.G. Properties of the network of the hydrogen bonds of water. Russ. Chem. Bull. 1997;46(5):888–891. https://doi.org/10.1007/BF02496112

39. Bushuev Y.G., Lyashchenko A.K. Structural Characteristics of H-Bond Networks in Water: 3D Model. Russ. J. Phys. Chem. 1995;69(1):33–38.

40. Malenkov G. Liquid water and ices: understanding the structure and physical properties. J. Phys. Condens. Matter. 2009;21(28):283101. https://doi.org/10.1088/09538984/21/28/283101

41. Berg J.M., Tymoczko J.L., Stryer L. Chemical Bonds in Biochemistry. In: Biochemistry. 5th edition. NY: W.H. Freeman and Company; 2010. P. 42–51.

42. Suresh S.J., Naik V.M. Hydrogen bond thermodynamic properties of water from dielectric constant data. J. Chem. Phys. 2000;113(21):9727–9732. http://doi.org/10.1063/1.1320822

43. Oka K., Shibue T., Sugimura N., Watabe Y., WintherJensen B., Nishide H. Long-lived water clusters in hydrophobic solvents investigated by standard NMR techniques. Sci. Rep. 2019;9(1):223. https://doi.org/10.1038/s41598-018-36787-1

44. Lobyshev V.I., Solovei A.B., Bulienkov N.A. Computer modular design of parametric structures of water. Biophysics. 2003;48(6):932–941. https://doi.org/10.1016/s0167-7322(03)00115-6

45. Maheshwary S., Patel N., Sathyamurthy N., Kulkarni A.D., Gadre S.R. Structure and Stability of Water Clusters (H2O)n, n = 8−20: An Ab Initio Investigation. Phys. Chem. A. 2001; 105(46):10525–10537. https://doi.org/10.1021/jp013141b

46. Elsaesser T. Ultrafast memory loss and relaxation processes in hydrogen-bonded systems. Biol. Chem. 2009;390(11):1125–1132. https://doi.org/10.1515/bc.2009.126

47. Chaplin M.F. A proposal for the structuring of water. Biophys. Chem. 200;83(3):211–221. https://doi.org/10.1016/s0301-4622(99)00142-8

48. Müller A., Bögge H., Diemann E. Structure of a cavity-encapsulated nanodrop of water. Inorg. Chem. Commun. 2003;6(1):52–53. https://doi.org/10.1016/S13877003(02)00679-2

49. Garcia-Ratés M., Miró P., Poblet J.M., Bo C., Avalo J.B. Dynamics of encapsulated water inside Mo132 cavities. Phys. Chem. B. 2011;115(19):5980–5992. https://doi.org/10.1021/jp110328z

50. Fujii A., Mizuse K. Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters. Int. Rev. Phys. Chem. 2012;32(2):266–307. https://doi.org/10.1080/0144235X.2012.760836

51. Lenz A., Ojamäea L. A theoretical study of water equilibria: the cluster distribution versus temperature and pressure for (H2O)n, n=1–60, and ice. J. Chem. Phys. 2009;131(13):134302. https://doi.org/10.1063/1.3239474

52. Buck U., Pradzynski C., Zeuch T., Dieterich J., Hartke B. A size resolved investigation of large water clusters. Phys. Chem. Chem. Phys. 21014;16(15):6859–6871. https://doi.org/10.1039/c3cp55185g

53. Cole W.T.S., Farrell J.D., Wales D.J., Saykally R.J. Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm. Science. 2016;352(6290):1194–1197. https://doi.org/10.1126/science.aad8625

54. Marcus Y. Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 2009;109(3):1346–1370. https://doi.org/10.1021/cr8003828

55. Shu L., Jegatheesan L., Jegatheesan V., Li, C-Q. The structure of water. Fluid Phase Equilibria. 2020;511:112514. https://doi.org/10.1016/j.fluid.2020.112514

56. Goncharuk V.V., Orekhova E.A., Malyarenko V.V. Influence of temperature on water clusters. J. Water Chem. Technol. 2008;30(2):80–84. https://doi.org/10.3103/S1063455X08020033

57. Baranov А.V., Petrov V.I., Fedorov А.V., Chernyakov G.M. Effect of microscopic NACL impurities on clustering dynamics in liquid water: low-frequency Raman spectroscopy. J. Exper. Theor. Phys. Lett. (JETP Letters). 1993;57(6):371–375.

58. Farashchuk N.F., Telenkova O.G., Mikhailova R.I. Recovery of water structure after boiling. Water Purification. Water Treatment. Water Supply. 2008; 6(6):20–21 (in Russ.).

59. Syroeshkin A.V., Smirnov A.N., Goncharuk V.V., et al. Water as heterogeneous structure. INVESTIGATED in RUSSIA. 2006;9:843–854 (in Russ.).

60. Sotthewes K., Bampoulis P., Zandvliet H.J.W., Lohse D., Poelsema B. Pressure-Induced Melting of Confined Ice. ACS Nano. 2017;11(12):12723–12731. https://doi.org/10.1021/acsnano.7b07472

61. Riesz P., Kondo T. Free radical formation induced by ultrasound and its biological implications. Free Radic. Biol. Med. 1992;13(3):247–270. https://doi.org/10.1016/08915849(92)90021-8

62. Didenko Y., McNamara W., Suslick S. Hot Spot Conditions during Cavitation in Water. J. Am. Chem. Soc. 1999;121(24):5817–5818. https://doi.org/10.1021/ja9844635

63. Yusof N.S., Babgi B., Alghamdi Y., Aksu M., Madhavan J., Ashokkumar M. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrason. Sonochem. 2016;29:568–576. https://doi.org/10.1016/j.ultsonch.2015.06.013

64. Nizamani S., Kazi T.G., Afridi H.I. Ultrasonicenergy enhance the ionic liquid-based dual microextraction to preconcentrate the lead in ground and stored rain water samples as compared to conventional shaking method. Ultrason. Sonochem. 2018;40(Part A):265–270. https://doi.org/10.1016/j.ultsonch.2017.07.024

65. Kovalenko V.F., Glazkova V.V. The influence of acoustic waves on water structure properties. Biomed. Eng. Electron. 2013;(1):2–14 (in Russ.). URL: https://www.elibrary.ru/item.asp?id=19825530

66. Ivanov Е.G., Kokorin N.V., Chevachina Е.Е. The activation of water informational qualities by method of acoustic cavitation. Bulletin NGIEI. 2017;4(71):16–27 (in Russ.). URL: https://cyberleninka.ru/article/n/aktivizatsiyainformatsionnyh-kachestv-vody-sposobom-akusticheskoykavitatsii

67. Skinner L.B., Benmore C.J., Neuefeind J.C., Parise J.B. The structure of water around the compressibility minimum. J. Chem. Phys. 2014;141(12):214507. https://doi.org/10.1063/1.4902412

68. Chesnoy J. Ricard D. Experimental study of vibrational relaxation in liquid hydrogen chloride. Chem. Phys. Lett. 1980;73(3):433–437. https://doi.org/10.1016/00092614(80)80689-0

69. Lock J., Bakker H.J. Temperature dependence of vibrational relaxation in liquid H2O. J. Chem. Phys. 2002;117:1708–1713. https://doi.org/10.1063/1.1485966

70. Hobley J., Kuge Y., Gorelik S., Kasuya M., Hatanaka K., Kajimoto S., Fukumura H. Water expansion dynamics after pulsed IR laser heating. Phys. Chem. Chem. Phys. 2008;10(34):5256–5263. https://doi.org/10.1039/b805838e

71. Fenkes M., Fitzpatrick J.L., Ozolina K., Shiels H.A., Nudds R.L. Sperm in hot water: direct and indirect thermal challenges interact to impact on brown trout sperm quality. J. Exp. Biol. 2017;220(Part 14):2513–2520. https://doi.org/10.1242/jeb.156018

72. Bari M.L., Inatsu Y., Isobe S., Kawamoto S. Hot water treatments to inactivate Escherichia coli O157:H7 and Salmonella in mung bean seeds. J. Food. Prot. 2008;71(4):830–834. https://doi.org/10.4315/0362-028x-71.4.830

73. Bari M.L., Sugiyama J., Kawamoto S. Repeated quick hot-and-chilling treatments for the inactivation of Escherichia coli O157:H7 in mung bean and radish seeds. Foodborne Pathog. Dis. 2009;6(1):137–143. https://doi.org/10.1089/fpd.2008.0143

74. Dai D., Rhoads W.J., Edwards M.A., Pruden A. Shotgun Metagenomics Reveals Taxonomic and Functional Shifts in Hot Water Microbiome Due to Temperature Setting and Stagnation. Front. Microbiol. 2018;9:2695. https://doi.org/10.3389/fmicb.2018.02695

75. Brazeau R.H., Edwards M.A. Role of Hot Water System Design on Factors Influential to Pathogen Regrowth: Temperature, Chlorine Residual, Hydrogen Evolution, and Sediment. Environ. Eng. Sci. 2013;30(10):617–627. https://doi.org/10.1089/ees.2012.0514

76. Dai D.J., Proctor C.R., Williams K., Edwards M.A., Pruden A. Mediation of effects of biofiltration on bacterial regrowth, Legionella pneumophila, and the microbial community structure under hot water plumbing conditions. Environ. Sci.: Water Res. Technol. 2018;4(2):183–194. https://doi.org/10.1039/C7EW00301C

77. Ranieri U., Giura P., Gorelli F.A., Santoro M., Klotz S., Gillet P., Paolasini L., Koza M.M., Bove L.E. Dynamical crossover in hot dense water: The hydrogen bond role. J. Phys. Chem. B. 2016;120(34):9051–9059. https://doi.org/10.1021/acs.jpcb.6b04142

78. Bridgman P.W. The viscosity of liquids under pressure. Proc. Nat. Acad. Sci. USA. 1925;11(10):603–606. https://doi.org/10.1073/pnas.11.10.603

79. Lodemann H.D. Water and its solutions at high pressures and low temperatures. Polish J. Chem. 1994;68(1):1–22.

80. Molina-García A.D. The Effect of Hydrostatic Pressure on Biological Systems. Biotechnol. Genet. Eng Rev. 2002;19:3–54. https://doi.org/10.1080/02648725.2002.10648021

81. Knierbein M., Venhuis M., Held C., Sadowski G. Thermodynamic properties of aqueous osmolyte solutions at high-pressure conditions. Biophys. Chem. 2019;253:106211. https://doi.org/10.1016/j.bpc.2019.106211

82. Imoto S., Marx D. Pressure response of the THz spectrum of bulk liquid water revealed by intermolecular instantaneous normal mode analysis. J. Chem. Phys. 2019;150(8):084502. https://doi.org/10.1063/1.5080381

83. Makarov D.M., Egorov G.I., Kolker A.M. Density and Volumetric Properties of Aqueous Solutions of Trimethylamine N-Oxide in the Temperature Range from (278.15 to 323.15) K and at Pressures up to 100 MPa. J. Chem. Eng. Data. 2015;60(5):1291–1299. http://doi.org/10.1021/je500977g

84. Strässle T., Saitta A.M., Godec Y.L., Hamel G., Klotz S., Loveday J.S., Nelmes R.J. Structure of dense liquid water by neutron scattering to 6.5 GPa and 670 K. Phys. Rev. Lett. 2006;96(6):067801. https://doi.org/10.1103/physrevlett.96.067801

85. Koga Y., Westh P., Yoshida K., Inaba A., Nakazawa Y. Gradual crossover in molecular organization of stable liquid H2O at moderately high pressure and temperature. AIP Advances. 2014;4(9):097116. http://doi.org/10.1063/1.4895536

86. Yurchenko S.O., Shkirin A.V., Ninham B.W., Sychev A.A., Babenko V.A., Penkov N.V., Kryuchkov N.P., Bunkin N.F. Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions. Langmuir. 2016;32(43):11245–11255. http://doi.org/10.1021/acs.langmuir.6b01644

87. Takahashi M., Kawamura T., Yamamoto Y., Ohnari H., Himuro S., Shakutsui H. Effect of Shrinking Microbubble on Gas Hydrate Formation. J. Phys. Chem. B. 2003;107(10):2171–2173. https://doi.org/10.1021/jp022210z

88. Chu X., Agmo A. Sexual incentive motivation in old male rats: the effects of sildenafil and a compound (Impaza) stimulating endothelial NO synthase. Pharmacol. Biochem. Behav. 2008;89(2):209–217. https://doi.org/10.1016/j.pbb.2007.12.012

89. Serizawa A., Inui T., Yahiro T., Kawara Z. Pseudo-Laminarization of Micro-Bubble Containing Milky Bubbly Flow in a Pipe. Multiphase Sci. Technol. 2005;17(1–2):79–101. http://doi.org/10.1615/.v17.i1-2.50

90. Kumykov Т.С., Jekamukhov М.К., Karov B.G. The bubbles influences on the water conductivity. Bulleten of Higher Education Institutes. North Caucasus Region Natural Sciences. 2009;2:42–43 (in Russ.). URL: https://cyberleninka.ru/article/n/o-vliyanii-puzyrkov-na-provodimost-vody/viewer

91. Ueda Y., Tokuda Y., Nihei N., Sugiyama A., Ogawa Y., Shiraga K. Electric and Electrochemical Properties of Fine Bubble Water and Analysis of the Correlation with Applied Research. Japanese J. Multiphase Flow. 2015;28(5):555–561. https://doi.org/10.3811/jjmf.28.555

92. Kushnir S.V., Kost’ M.V., Seniv O.R. Influence of Bubbling of “Passive” Gases on the Properties of Water and Aqueous Solutions of Sodium Chloride. Mater. Sci. 2016;51:734–740. https://doi.org/10.1007/s11003-016-9897-1

93. Liu S., Kawagoe Y., Makino Y., Oshita S. Effects of nanobubbles on the physicochemical properties of water: The basis for peculiar properties of water containing nanobubbles. Chem. Eng. Sci. 2013;93:250–256. http://doi.org/10.1016/j.ces.2013.02.004

94. Kamimura Ch., Kamimura T. Metod for manufacturing ultra-fine bubbles having oxidizing radical or reducing radicl by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device: US Patent Application 20200094205. Publ. 26.03.2020. http://www.freepatentsonline.com/y2020/0094205.html. Accessed August 31, 2021.

95. Liu Q., Zhou Y.H., Ye F., Yang Z.Q. Antivirals for Respiratory Viral Infections: Problems and Prospects. Semin. Respir. Crit. Care. Med. 2016;37(4):640–646. https://doi.org/10.1055/s-0036-1584803

96. Marui T. An Introduction to Micro/Nano-Bubbles and their Applications. Systemics, Cybernetics and Informatics. 2013;11(4):68–73. URL: https://www.hidronano.com.br/wp-content/uploads/2018/10/An-Introduction-to-Micro-anoBubbles-and-their-Applications.pdf

97. Ohnari H. Fisheries experiments of cultivated shells using micro-bubbles techniques. J. Heat. Transfer. Soc. Japan. 2001;40(160):2–7. URL: Fisheries experiments of cultivated shells using micro-bubbles technique | CiNii Research

98. Ebina K., Shi K., Hirao M., Hashimoto J., Kawato Y., Kaneshiro S., Morimoto,T., Koizumi K., Yoshikawa H. Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice. PLoS One. 2013;8(6):e65339. https://doi.org/10.1371/journal.pone.0065339

99. Kurata K., Taniguchi T., Fukunaga T., Matsuda J., Higaki H. Development of a compact microbubble generator and its usefulness for three-dimensional osteoblastic cell culture. J. Biomechan. Sci. Eng. 2008;2(4):166–177. http://doi.org/10.1299/jbse.2.166

100. Park J., Kurata K. Application of microbubble to hydroponics solution promotes lettuce growth. Horttechnology. 2009;19(1):212–215. http://doi.org/10.21273/HORTSCI.19.1.212

101. Ushikubo F.Y., Oshita S., Furukawa T., Makino Y., Kawagoe Y., Shiina T. A study of water containing micro and nano-bubbles and its possible effect on physiological activity. In: Proceedings of the CIGR International Conference of Agricultural Engineering. 2008.

102. Dzubiella J. Explicit and implicit modeling of nanobubbles in hydrophobic confinement. An. Braz. Acad. Sci. 2010;82(1):3–12. http://doi.org/10.1590/S000137652010000100002

103. Seddon J.R.T., Lohse D., Ducker W.A., Craig V.S.J. A deliberation on nanobubbles at surfaces and in bulk. Chem. Phys. Chem. 2012;13(8):2179–2187. https://doi.org/10.1002/cphc.201100900

104. Xiao Y., Jiang S.C., Wang X., Muhammad T., Song P., Zhou B., Zhou Y., Li Y. Mitigation of biofouling in agricultural water distribution systems with nanobubbles. Environ. Int. 2020;141:105787. https://doi.org/10.1016/j.envint.2020.105787

105. Vagnell M. Effect of Vortex-processed Water on Tomato (Solanum lycopersicum) Plants. Swedich University of Agrocultural Sciences. 2012. 21 p. URL: https://stud.epsilon.slu.se/5243/1/vagnell_m_130130.pdf

106. Tschulakow A.V., Yan Y., Klimek W. A new approach to the memory of water. Homeopathy. 2005;94(4):241–247. https://doi.org/10.1016/j.homp.2005.07.003

107. Rangasamy S.B., Ghosh S., Pahan K. RNS60, a physically-modified saline, inhibits glial activation, suppresses neuronal apoptosis and protects memory in a mouse model of traumatic brain injury. Exp. Neurol. 2020;328:113279. https://doi.org/10.1016/j.expneurol.2020.113279

108. Mondal S., Martinson J.A., Ghosh S., Watson R., Pahan K. Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by a physically-modified saline. PLoS ONE. 2012;7(12):1–18. https://doi.org/10.1371/journal.pone.0051869

109. Bonamin L. Signals and Images. Contributions and Contradictions about High Dilution Research. Springer Netherlands; 2008. 222 p. http://doi.org/10.1007/978-1-4020-8535-2

110. Penkov N.V. Temporal dynamics of the scattering properties of deionized water. Phys. Wave Phen. 2020;28(2):135–139. http://doi.org/10.3103/S1541308X20020132

111. Slatinskaya O.V., Pyrkov Y.N., Filatova S.A., Guryev D.A., Penkov N.V. Study of the Effect of Europium Acetate on the Intermolecular Properties of Water. Front. Phys. 2021;(9):641110. https://doi.org/10.3389/fphy.2021.641110

112. Lobyshev V.I. Evolution of High-Frequency Conductivity of Pure Water Samples Subjected to Mechanical Action: Effect of a Hypomagnetic Filed. Phys. Wave Phen. 2021;(29):98–101. https://doi.org/10.3103/S1541308X21020084

113. Ryzhkina I.S., Murtazina L.I., Kiseleva Y.V., Konovalov A.I. Self-Organization and Physicochemical Properties of Aqueous Solutions of the Antibodies to Interferon Gamma at Ultrahigh Dilution. Dokl. Phys. Chem. 2015;462(1):110–114. http://doi.org/10.1134/S0012501615050048

114. Petrov S.I., Epstein O.I. Effect of potentiated solutions on mercury(II) signal in inversion voltammetry. Bull. Exp. Biol. Med. 2003;135(Suppl. 7):99–101. https://doi.org/10.1023/a:1024707519510

115. Elia V., Niccoli M. New Physico-Chemical Properties of Extremely Diluted Aqueous Solutions. J. Thermal Analys. Calorimetry. 2004;75(3):815–836. http://doi.org/10.1023/B:JTAN.0000027178.11665.8f

116. Murtazina L.I., Ryzhkina I.S., Mishina O.A., Andrianov V.V., Bogodvid T., Gainutdinov Kh.L., Muranova L.N., Konovalov A.I. Aqueous and salt solutions of quinine of low concentrations: self-organization, physicochemical properties and actions on the electrical characteristics of neurons. Biofizika. 2014;59(4):717–722 (in Russ.).

117. Lobyshev V.I. Dielectric characteristics of highly diluted aqueous diclofenac solutions in the frequency range of 20 Hz to 10MHz. Phys. Wave. Phen. 2019;27(2):119–127. http://doi.org/10.3103/S1541308X19020067

118. Bunkin N.F., Shkirin A.V., Penkov N.V., Chirikov S.N., Ignatiev P.S., Kozlov V.A. The Physical Nature of Mesoscopic Inhomogeneities in Highly Diluted Aqueous Suspensions of Protein Particles. Phys. Wave. Phen. 2019;27(2):102–112. https://doi.org/10.3103/S1541308X19020043

119. Lyakhov G., Shcherbakov I. Approaches to the physical mechanisms and theories of low-concentration effects in aqueous solutions. Phys. Wave Phen. 2019;27(2):79–86. http://doi.org/10.3103/S1541308X19020018

120. Gudkov S.V., Lyakhov G.A., Pustovoy V.I., Shcherbakov I.A. Vibration–vortex mechanism of radical-reaction activation in an aqueous solution: Physical analogies. Phys. Wave Phen. 2021;29(2):108–113. http://doi.org/10.3103/S1541308X21020060

121. Gudkov S.V., Baimler I.V., Uvarov O.V., Smirnova V.V., Volkov M.Y., Semenova A.A., Lisitsyn A.B. Influence of the Concentration of Fe and Cu Nanoparticles on the Dynamics of the Size Distribution of Nanoparticles. Front. Phys. 2020;8(11):622551. http://doi.org/10.3389/fphy.2020.622551

122. Kokornaczyk M.O., Würtenberger S., Baumgartner S. Impact of succussion on pharmaceutical preparations analyzed by means of patterns from evaporated droplets. Sci. Rep. 2020;10(1):570. https://doi.org/10.1038/s41598-019-57009-2

123. Goncharuk V.V., Syroeshkin A.V., Pleteneva T.V., Uspenskaya E.V., Levitskaya O.V., Tverdislov V.A. On the Possibility of Chiral Structure-Density Submillimeter Inhomogeneities Existing in Water. J. Water Chem. Technol. 2017;39(6):319–324. http://doi.org/10.3103/S1063455X17060029

124. Konovalov A.I., Ryzhkina I.S. Formation of nanoassociates as a key to understanding of physicochemical and biological properties of highly dilute aqueous solutions. Russ. Chem. Bull. 2014;63(1):1–14. https://doi.org/10.1007/s11172-014-0388-y

125. Rubtsova E.V., Soloveĭ A.B., Lobyshev V.I. Distribution of internal parameters of protein hydration shell structure. Biofizika. 2014;59(6):1071–1078 (in Russ.).

126. Belovolova L.V., Glushkov M.V., Vinogradov E.A., Babintsev V.A., Golovanov V.I. Ultraviolet Fluorescence of Water and Highly Diluted Aqueous Media. Phys. Wave. Phen. 2009;17(1):21–31. http://doi.org/10.3103/s1541308X0901004X

127. Styrkas A.D., Nikishina N.G. Mechanochemical processes in water. High Energy Chemistry. 2007;41(6):396–402. https://doi.org/10.1134/S0018143907060021

128. Ashmarin I.P., Karazeeva E.P., Lelekova T.V. Effectiveness of ultrasmall doses of endogenous bioregulators and immunoactive compounds. Zh. Mikrobiol. Epidemiol. Immunobiol. 2005;(3):109–116 (in Russ.).

129. Chikramane P.S., Kalita D., Suresh A.K., Kane S.G., Bellare J.R. Why extreme dilutions reach non-zero asymptotes: a nanoparticulate hypothesis based on froth flotation. Langmuir. 2012;28(45):15864–15875. https://doi.org/10.1021/la303477s

130. Nirmalkar N., Pacek A.W., Barigou M. Bulk Nanobubbles from Acoustically Cavitated Aqueous Organic Solvent Mixtures. Langmuir. 2019;35(6):2188–2195. https://doi.org/10.1021/acs.langmuir.8b03113

131. Meegoda J.N., Hewage S.A., Batagoda J.H. Stability of Nanobubbles. Environmen. Eng. Sci. 2018;35(11):1216–1227. http://doi.org/10.1089/ees.2018.0203

132. Bunkin N.F., Lyakhov G.A., Shkirin A.V., Kobelev A.V., Penkov N.V., Ugraitskaya S.V., Fesenko E.E. Study of the submicron heterogeneity of aqueous solutions of hydrogen-bond acceptor molecules by laser diagnostics methods. Phys. Wave. Phen. 2015;23(4):241–254. https://doi.org/10.3103/S1541308X15040019

133. Ushikubo F.Y., Furukawa T., Nakagawa R., Enari M., Makino Y., Kawagoe Y., Shiina T., Oshita S. Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochem. Eng. Asp. 2010;361(1–3):31–37. https://doi.org/10.1016/j.colsurfa.2010.03.005

134. Demangeat J.L. NMR water proton relaxation in unheated and heated ultrahigh aqueous dilutions of histamine: evidence for an air-dependent supramolecular organization of water. J. Mol. Liq. 2009;144:32–39. http://doi.org/10.1016/j.molliq.2008.07.013

135. Betti L., Trebbi G., Kokornaczyk M.O., Nani D., Peruzzi M., Dinelli G., Bellavite P., Brizzi M. Number of succussion strokes affects effectiveness of ultra-high-diluted arsenic on in vitro wheat germination and polycrystalline structures obtained by droplet evaporation method. Homeopathy. 2017;106(1):47–54. https://doi.org/10.1016/j.homp.2016.12.001

136. Sundqvist C. Plants are responding to homeopathy. 2020. URL: https://www.researchgate.net/publication/341432748_PLANTS_ARE_RESPONDING_TO_HOMEOPATHY

137. Elia V., Ausanio G., Gentile F., Germano R., Napoli E., Niccoli M. Experimental evidence of stable water nanostructures in extremely dilute solutions, at standard pressure and temperature. Homeopathy. 2014;103(1):44–50. https://doi.org/10.1016/j.homp.2013.08.004

138. Konovalov A.I., Ryzhkina I.S. Highly diluted aqueous solutions: Formation of nano-sized molecular assemblies (nanoassociates). Geochem. Int. 2014;52(13):1207–1226. http://doi.org/10.1134/S0016702914130072

139. Pershin S.M., Bunkin A.F., Grishin M.Y., Davydov M.A., Lednev V.N., Fedorov A.N., Palmina N.P. Сorrelation of optical activity and light scattering in ultra-lowconcentrated phenosan-potassium aqueous solutions. Doklady Akademii Nauk. 2015;461(2):160–163 (in Russ.). https://doi.org/10.7868/S0869565215080113

140. Syroeshkin A.V., Nikiforova M.V., Koldina A.M., Gornak А.А., Tarabrina I.V. Drugs based on release-active antibodies. Handbook for Practitioners Doctors. 2018;3:25–30 (in Russ.).

141. Anick D.J., Ives J.A. The silica hypothesis for homeopathy: physical chemistry. Homeopathy. 2007;96(3):189–195. https://doi.org/10.1016/j.homp.2007.03.005

142. Perry C.C., Keeling-Tucker T. Crystalline silica prepared at room temperature from aqueous solution in the presence of intrasilica bioextracts. Chem. Commun. 1998;9(23):2587–2588. https://doi.org/10.1039/A807404F

143. Perry C.C., Keeling-Tucker T. Model studies of colloidal silica precipitation using biosilica extracts from Equisetum telmateia. Colloid Polym. Sci. 2003;281:652–664. https://doi.org/10.1007/s00396-002-0816-7

144. Khripin C.Y., Pristinski D., Dunphy D.R., Brinker C.J., Kaehr B. Protein-directed assembly of arbitrary threedimensional nanoporous silica architectures. ACS Nano. 2011;5(2):1401–1409. https://doi.org/10.1021/nn1031774

145. Wang D.C., Chen G.Y., Chen K.Y., Tsai C.H. DNA as a template in self-assembly of Au nano-structure. IET Nanobiotechnol. 2011;5(4):132–135. https://doi.org/10.1049/iet-nbt.2011.0013

146. Baca H.K., Carnes E.C., Ashley C.E., Lopez D.M., Douthit C., Karlin S., Brinker C.J. Cell-directed-assembly: directing the formation of nano/bio interfaces and architectures with living cells. Biochim. Biophys. Acta. 2011;1810(3):259–267. https://doi.org/10.1016/j.bbagen.2010.09.005

147. Neville F., Broderick M.J., Gibson T., Millner P.A. Fabrication and activity of silicate nanoparticles and nanosilicate-entrapped enzymes using polyethyleneimine as a biomimetic polymer. Langmuir. 2011;27(1):279–285. https://doi.org/10.1021/la1033492

148. Duval E., Adichtchev S., Sirotkin S., Mermeta A. Long-lived submicrometric bubbles in very diluted alkali halide water solutions. Phys. Chem. Chem. Phys. 2012;14(12):4125–4132. https://doi.org/10.1039/c2cp22858k

149. Demangeat J.L. Nanobulles et superstructures nanométriques dans les hautes dilutions homéopathiques: le rôle crucial de la dynamisation et hypothèse de transfert de l’information. La Revue d’Homéopathie. 2015;6(4):125–139. https://doi.org/10.1016/j.revhom.2015.10.002

150. Demangeat J.L. Towards a Rational Insight into the Paradox of Homeopathy. Adv. Complement. Alt. Med. 2018;2(2):121–133. http://doi.org/10.31031/ACAM.2018.02.000534

151. Castagne,V., Lemaire M., Kheyfets I., Dugina J.L., Sergeeva S.A., Epstein O.I. Antibodies to S100 proteins have anxiolytic-like activity at ultra-low doses in the adult rat. J. Pharm. Pharmacol. 2008;60(3):309–316. https://doi.org/10.1211/jpp.60.3.0005

152. Epstein O. The Spatial Homeostasis Hypothesis. Symmetry. 2018;10(4):103. http://doi.org/10.3390/sym10040103

153. Rafalsky V., Averyanov A., Bart B., Minina E., Putilovskiy M., Andrianova E., Epstein O. Efficacy and safety of Ergoferon versus oseltamivir in adult outpatients with seasonal influenza virus infection: a multicenter, open-label, randomized trial. Int. J. Infect. Dis. 2016;51:47–55. https://doi.org/10.1016/j.ijid.2016.09.002

154. Carello R., Ricottini L., Miranda V., Panei P., Rocchi L., Arcieri R., Galli E. Long-term treatment with low-dose medicine in chronic childhood eczema: a doubleblind two-stage randomized control trial. Ital. J. Pediatr. 2017;43(1):78. https://doi.org/10.1186/s13052-017-0393-5

155. Mkrtumyan A., Romantsova T., Vorobiev S., Volkova A., Vorokhobina N., Tarasov S., Putilovskiy M., Andrianova E., Epstein O. Efficacy and safety of Subetta add-on therapy in type 1 diabetes mellitus: The results of a multicenter, double-blind, placebo-controlled, randomized clinical trial. Diabetes Res. Clini. Pract. 2018;142:1–9. https://doi.org/10.1016/j.diabres.2018.04.044

156. Martin-Martin L.S., Giovannangeli F., Bizzi E., Massafra U., Ballanti E., Cassol M., Migliore A. An open randomized active-controlled clinical trial with low-dose SKA cytokines versus DMARDs evaluating low disease activity maintenance in patients with rheumatoid arthritis. Drug Des. Devel. Ther. 2017;11:985–994. https://doi.org/10.2147/dddt.s118298

157. Pushkar D., Vinarov A., Spivak L., Kolontarev K., Putilovskiy M., Andrianova E., Epstein О. Efficacy and safety of Afalaza in men with symptomatic benign prostatic hyperplasia at risk of progression: a multicenter, double-blind, placebocontrolled, randomized clinical trial. Cent. European J. Urol. 2018;71(4)427–435. https://doi.org/10.5173/ceju.2018.1803

158. Uberti F., Morsanuto V., Ghirlanda S., Ruga S., Clemente N., Boieri C., Boldorini R., Molinari C. Highly Diluted Acetylcholine Promotes Wound Repair in an In Vivo Model. Adv. Wound Care (New Rochelle). 2018;7(4):121–133. https://doi.org/10.1089/wound.2017.0766

159. Ivashkin V.T., Poluektova E.A., Glazunov A.B., Putilovskiy M.A., Epstein O.I. Pathogenetic approach to the treatment of functional disorders of the gastrointestinal tract and their intersection: results of the Russian observation retrospective program COMFORT. BMC Gastroenterol. 2020:20(1):2–10. https://doi.org/10.1186/s12876-019-1143-5

160. Spitsin A., Bush A., Kamentsev K. Piezoelectric and dielectric properties of Bi3TiNbO9 prepared by hot pressing from powders activated using the serial dilution method. Sci. Rep. 2020;10(1):22198. https://doi.org/10.1038/s41598020-78826-w

161. Penkov N.V. Peculiarities of the perturbation of water structure by ions with various hydration in concentrated solutions of CaCl2, CsCl, KBr, and KI. Phys. Wave Phenom. 2019;27(2):128–134. http://doi.org/10.3103/s1541308X19020079

162. Malarczyk E., Pazdzioch-Czochra M., Grąz M., Kochmańska-Rdest J., Jarosz-Wilkołazka A. Nonlinear changes in the activity of the oxygen-dependent demethylase system in Rhodococcus erythropolis cells in the presence of low and very low doses of formaldehyde. Nonlinear Biomed. Phys. 2011;5(1):9. http://doi.org/10.1186/1753-4631-5-9

163. Bunkin N.F., et al. Shaking-induced aggregation and flotation in immunoglobulin dispersions: Differences between water and water–ethanol mixtures. ACS Omega. 2020;5(24):14689–14701. https://doi.org/10.1021/acsomega.0c01444

164. Bell I.R., Schwartz G.E. Adaptive network nanomedicine: an integrated model for homeopathic medicine. Front. Biosci. (Schol. Ed.). 2013;5(2):685–708. https://doi.org/10.2741/s400

165. Dehaoui A., Issenmann B., Caupin F. Viscosity of deeply supercooled water and its coupling to molecular diffusion. PNAS. 2015;112(39):12020–12025. https://doi.org/10.1073/pnas.1508996112


The review article summarizes the available data on how the acoustic exposure, thermal exposure, pressure variation, shaking, intensive vibration treatment followed by dilutions, vortexing, and bubble generation affect the physicochemical properties of water, and how the biological properties of such aqueous solutions change.

Review

For citations:


Don E.S., Stepanov G.O., Tarasov S.A. The effects of physical treatment on physicochemical and biological properties of water and aqueous solutions. Fine Chemical Technologies. 2023;18(5):426-445. https://doi.org/10.32362/2410-6593-2023-18-5-426-445

Views: 678


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)