Preview

Fine Chemical Technologies

Advanced search

Parameters of the UNIQUAC model for describing the vapor-liquid phase equilibrium of D2-T2, D2-DT, DT-T2 hydrogen isotope mixtures

https://doi.org/10.32362/2410-6593-2022-17-6-459-472

Abstract

Objectives. Determination of the parameters of the binary energy interaction of the (UNIversal QUAsiChemical) UNIQUAC model on the basis of mathematical processing of experimental literature data on the phase equilibrium of hydrogen isotopic mixtures D2-T2, D2-DT, DT-T2 to calculate the activity coefficients of the components D2, DT, and T2.

Methods. The method of successive approximations was used in junction with the “from stage to stage” method, which consists in calculating a single evaporation process on a theoretical plate.

Results. Equations were written for calculating the activity coefficients of hydrogen isotopes on the basis of the Sherwood theory as applied to binary D2-T2, D2-DT, DT-T2 and ternary D2-DT-T2 hydrogen isotope mixtures. The graphical dependences of the activity coefficients and separation coefficients of mixtures D2-T2, D2-DT, and DT-T2 are compared in the range of the concentration of a highly volatile component from 0 to 100 mol % at atmospheric pressure for three options: ideal mixtures; non-ideal mixtures using the Sherwood theory; non-ideal mixtures on the basis of the UNIQUAC model. The dependences of the separation coefficients a were found to be similar for all binary isotopic mixtures. However, when considering mixtures as ideal, a increases.

According to Sherwood's theory, a remains a practically constant value, which is independent of the composition of the mixture. The UNIQUAC model predicts a decrease in a with an increase in the concentration of a less volatile component in the mixture. The profile of the distribution of hydrogen isotopes D2, DT, and T2 of a three-component mixture D2-DT-T2, along the height of a distillation column operating in a closed mode was calculated for three variants. It was accepted that: pressure along the height of the column is constant and equal to atmospheric 760 mm Hg. Art.; number of theoretical plates 21; concentration of components in the liquid phase on the first plate (stage), in mol %: XD₂ = 65; XDT= 10; XT₂= 25; the accuracy of calculating the composition of the vapor phase is 10-10.

Conclusions. The parameters of the binary energy interaction of the UNIQUAC model of hydrogen isotopic mixtures D2-T2, D2-DT, and DT-T2 are determined. The UNIQUAC model is adequate in relation to experimental data on the coefficient of separation. Due to systematic deviations in the theoretical Sherwood and ideal models, they are not suitable for further calculations of phase equilibrium of isotopic mixtures of hydrogen D2-T2, D2-DT, DT-T2, and D2-DT-T2.

About the Author

T. G. Korotkova
Kuban State Technological University
Russian Federation

Tatyana G. Korotkova - Dr. Sci. (Eng.), Professor, Department of Life Safety, Scopus Author ID 56195415000, ResearcherID AAQ-3126-2021.

2, Moskovskaya ul., Krasnodar, 350072


Competing Interests:

The author declares no conflicts of interest



References

1. Alekseev I., Arkhipov E., Bondarenko S., Fedorchenko O., Ganzha V., Ivshin K., Kammel P., Kravtsov P., Petitjean C., Trofimov V., Vasilyev A., Vasyanina T., Vorobyov A., Vznuzdaev M. Cryogenic distillation facility for isotopic purification of protium and deuterium. Rev. Sci. Instrum. 2015;86(12):125102. https://doi.org/10.1063/1.4936413

2. Kinoshita M., Naruse Yu. Parameter Setting Method for Control System of Cryogenic Distillation Column. J. Nucl. Sci. Technol. 1981;18(8):595-607. https://doi.org/10.1080/18811248.1981.9733295

3. Sherman R.H., Bartlit J.R., Briesmeister R.A. Relative volatilities for the isotopic system deuterium - deuterium tritide - tritium. Cryogenics. 1976;16(10):611-613. https://doi.org/10.1016/0011-2275(76)90198-3

4. Bigeleisen J., Kerr E.C. Vapor - Liquid Equilibria of Dilute Solutions of HT in e-H2 and DT in e-D2 from the Triple Points to the Critical Temperatures of the Solutions. J. Chem. Phys. 1963;39(3):763-768. https://doi.org/10.1063/1.1734321

5. Sherwood A.E., Souers P.C. Thermodynamics of Liquid Hydrogen Solutions. Nuclear Technology/ Fusion. 1984;5(3):350-355. https://doi.org/10.13182/FST84-A23110

6. Hoge H.J., Arnold R.D. Vapor Pressures of Hydrogen, Deuterium, and Hydrogen Deuteride and Dew-Point Pressures of Their Mixtures. J. Res. Natl Bureau Stand. 1951;47(2):63-74. URL: https://nvlpubs.nist.gov/nistpubs/jres/47/jresv47n2p63_a1b.pdf

7. Gamburg D.Yu., Semenov V.P., Dubovkin N.F., Smirnova L.N. Vodorod. Svoistva, poluchenie, khranenie, transportirovanie, primenenie (Properties, receipt, storage, transportation, application). Gamburg D.Yu., Dubovkin N.F. (Eds.). Moscow: Khimiya; 1989. 672 p. (in Russ.). ISBN 5-7245-0034-5

8. Farkas L. Heavy isotope of hydrogen. Uspekhi fizicheskikh nauk (UFN) 1935;15(1):13-51 (in Russ.). https://doi.org/10.3367/UFNr.0015.193501b.0013 [Farkas L. Das schwere Wasserstoffisotop. Naturwissenschaften. 1934;22:658-662. https://doi.org/10.1007/BF01498704 ]

9. Hammel E.F. Some Calculated Properties of Tritium. J. Chem. Phys. 1950;18(2):228-229. https://doi.org/10.1063/1.1747597

10. Grilly E.R. The Vapor Pressures of Hydrogen, Deuterium and Tritium up to Three Atmospheres. J. Amer. Chem. Soc. 1951;73(2):843-846. https://doi.org/10.1021/ja01146a103

11. Malkov M.P., Zel'dovich A.G., Fradkov A.B., Danilov I.B. Vydelenie deiteriya iz vodoroda metodom glubokogo okhlazhdeniya (Separation of Deuterium from Hydrogen by Deep Cooling). Malkov M.P. (Ed.). Moscow: Gosatomizdat; 1961. 151 p. (in Russ.).

12. Scott R.B., Brickwedde F.G., Urey H.C., Wahl M.H. The Vapor Pressures and Derived Thermal Properties of Hydrogen and Deuterium. J. Chem. Phys. 1934;2(8):454. https://doi.org/10.1063/1.1749509

13. Shtekher M.S. Topliva i rabochie tela raketnykh dvigatelei (Fuels and working bodies of rocket engines). Moscow: Mashinostroenie; 1976. 304 p. (in Russ.).

14. Mittelhauser H.M., Thodos G. Vapour pressure relationships up to the critical point of hydrogen, deuterium, and tritium, and their diatomic combinations. Cryogenics. 1964;4(6):368-373. https://doi.org/10.1016/0011-2275(64)90078-5

15. Sherwood A.E. Vapor Pressure of HD, HT, and DT. Fluid Phase Equilibria. 1989;51:327-338. https://doi.org/10.1016/0378-3812(89)80374-7

16. Souers P.C., Briggs C.K., Pyper J.W., Tsugawa R.T. Hydrogen Vapor Pressures from 4 to 30 K: A Review. Lawrence Livermore National Laboratory. 1977 UCRL-52226. 35 p. URL: https://inis.iaea.org/collection/NCLCollectionStore/_Public/08/334/8334372.pdf

17. Aldehani M. Hydrogen-Water Isotope Exchange in a Trickle Bed Column by Process Simulation and 3D Computational Fluid Dynamics Modelling. PhD Thesis. Lancaster University; 2016. 208 p. URL: https://eprints.lancs.ac.uk/id/eprint/82667/1/2016_Mohammed_PhD.pdf

18. Walas S. Fazovye ravnovesiya v khimicheskoi tekhnologii (Phase Equilibria in Chemical Engineering): in 2 v.: transl. from Eng. Moscow: Mir; 1989.V. 1. 304 p.V. 2. 354 p. (in Russ.).[Walas S.M. Phase Equilibria in Chemical Engineering. Boston, London, Sydney: Butterworth-Heinemann; 1985. 671 p. ISBN-Г''978-075069313.]

19. Korotkova T.G., Kas'yanov G.I. Calculating a Rectification Column for Separating Mixtures of Light and Heavy Water. Russ. J. Phys. Chem. 2021;95(5):1051-1060. https://doi.org/10.1134/S0036024421050186 [Original Russian Text: Korotkova T.G., Kas'yanov G.I. Calculating a Rectification Column for Separating Mixtures of Light and Heavy Water. Zhurnal fizicheskoi khimii. 2021;95(5):800-809 (in Russ.). https://doi.org/10.31857/S0044453721050186 ]

20. Zefirov N.S. (Ed.). Khimicheskaya entsiklopediya: v 5 t.: T. 5. Triptofan-Yatrokhimiya (Chemical Encyclopedia: in 5 v. V. 5. Tryptophan-Iatrochemistry). Moscow: Bol'shaya Rossiiskaya entsiklopediya; 1998. 782 p. (in Russ.).

21. Iraola E., Nougues J. M., Sedano L., Feliu J. A., Batet L. Dynamic simulation tools for isotopic separation system modeling and design. Fusion Eng. Des. 2021;169: 112452. https://doi.org/10.1016/j.fusengdes.2021.112452

22. Nougues J. M., Feliu J. A., Campanya G., Iraola E., Batet L., Sedano L. Advanced Tools for ITER Tritium Plant System Modeling and Design. Fusion Sci. Technol. 2020;76(5):649-652. https://doi.org/10.1080/15361055.2020.1741278


Supplementary files

1. Calculated dependencies of activity coefficients of D2–T2 mixture components on D2 concentration in the liquid phase at atmospheric pressure.
Subject
Type Исследовательские инструменты
View (169KB)    
Indexing metadata ▾

The parameters of the binary energy interaction of the UNIQUAC model of hydrogen isotopic mixtures D2–T2, D2–DT, and DT–T2 are determined. The UNIQUAC model is adequate in relation to experimental data on the coefficient of separation. Due to systematic deviations in the theoretical Sherwood and ideal models, they are not suitable for further calculations of phase equilibrium of isotopic mixtures of hydrogen D2–T2, D2–DT, DT–T2, and D2–DT–T2.

Review

For citations:


Korotkova T.G. Parameters of the UNIQUAC model for describing the vapor-liquid phase equilibrium of D2-T2, D2-DT, DT-T2 hydrogen isotope mixtures. Fine Chemical Technologies. 2022;17(6):459-472. https://doi.org/10.32362/2410-6593-2022-17-6-459-472

Views: 614


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)