Preview

Fine Chemical Technologies

Advanced search

KINETICS OF OXIDATIVE CHLORINATION OF METHANE

https://doi.org/10.32362/2410-6593-2017-12-2-50-61

Full Text:

Abstract

Heterogeneous oxidative chlorination of methane was investigated. The target product is methyl chloride. The investigated terms and conditions of oxychlorination of methane: process temperature 400°C, pressure 0.1-0.9 MPa, catalyst (% weight.): copper chloride (II) 1-8%; potassium chloride 2.5%; lanthanum chloride 1%; carrier - aluminosilicate. Powder X-ray diffractometry and electron microscopy showed that the active catalyst components (CuCl2, KCl, LaCl3) are unevenly distributed on the support surface (α-Al2O3·SiO2) and form agglomerates with a high salt content, including binary chlorides such as KCuCl3, K2CuCl3 or K2CuCl4, hydrates K2CuCl4·2H2O and CuCl2·2H2O and hydroxychlorides Cu3Cl4(OH)2 and Cu2Cl(OH)3. The kinetics of methane oxychlorination was studied in a gradientless reactor at 400°C and pressure 0.1 - 0.9 MPa by varying the partial pressures of the reactants. Analysis of the products was carried out by GC. An equation of the reaction rate including partial pressures of methane, hydrogen chloride and water to the 0.77, 0.01 and 0.64 power, respectively, but of zero order by oxygen and chlorine provides an adequate description of methyl chloride formation rate. Significant influence of water partial pressure is proved for the reaction under consideration.

About the Authors

I. S. Silina
Moscow Technological University (Institute of Fine Chemical Technologies), LLC Research and Development Engineering Centre “Syntez”
Russian Federation

Moscow, 119571 Russia

Moscow, 119571 Russia



Е. А. Katsman
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia


Yu. A. Treger
LLC Research and Development Engineering Centre “Syntez”
Russian Federation
Moscow, 119571 Russia


V. N. Rozanov
LLC Research and Development Engineering Centre “Syntez”
Russian Federation
Moscow, 119571 Russia


L. D. Iskhakova
Fiber Optics Research Center of RAS
Russian Federation
Moscow, 119333 Russia


R. P. Ermakov
Fiber Optics Research Center of RAS
Russian Federation
Moscow, 119333 Russia


V. V. Koltashev
Fiber Optics Research Center of RAS
Russian Federation
Moscow, 119333 Russia


L. G. Bruk
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia


References

1. Treger Yu.A., Rozanov V.N., Flid M.R. Catalytic methane processing: pat. RU № 2394805. 2010. (in Russ.).

2. Roka K. Patent № 186270 England (1921); Patent № 478083 Germany (1923).

3. Rozanov V.N. Experimental testing of the process of oxidative chlorination of methane in the current production of chloromethanes // Khimicheskaya promyshlennost' (Chemical Industry). 1996. № 6. P. 351–356. (in Russ.).

4. Treger Yu.A., Rozanov V.N., Trusov L.I., Murashova O.P., Yas'kova V.Ya., Silina I.S. Method of the catalytic pyrolysis of methyl chloride.: pat. RU 2522575. 2014. (in Russ.).

5. Taraban'ko V.E., Taraban'ko N.V., Koropachinskaya N.V. Method of the production of chlorine by catalytic oxidation of hydrogen chloride: pat. RU 2409516 C1. 2011. (in Russ.).

6. Taraban'ko V.E., Taraban'ko N.V. Vanadium catalyst for the oxidation of hydrogen chloride to chlorine by molecular oxygen: pat. RU 2 440 927 C1. 2012. (in Russ.).

7. Mleczko L., Schlüter O., Schubert S., Wolf A. Verfahren zur Erhöhung der Langzeitstabilität und Aktivität von Ruthenium-Katalysatoren: pat. DE 102007020143 A1. 2008.

8. Iwanaga K., Suzuta T., Mori Ya., Yoshii M. Method for producing chlorine: pat. US 6977066 B1. 2005.

9. Brettschneider O., Glaeser A., Klatt K.-U., Wang J., Welz C., Werner K. Prozess zur Herstellung von Chlor aus HCl: pat. DE 102007020148 A1. 2008.

10. Rozanov V.N., Treger Yu.A. One-stage adiabatic catalytic reactor for the process of oxychlorination of methane // Kataliz v promyshlennosti (Catalysis in Industry). 2015. V. 15, № 3. P. 49–53. (in Russ.).

11. Rozanov V.N., Gvozd E.V., Kernerman V.A., Svetlanov E.B., Trushechkina M.A., Treger Yu.A. Kinetic investigation of the reaction of oxychlorination of methane in a reactor with a vibrating suspended catalyst bed// Kinetika i kataliz (Kinetics and Catalysis). 1989. V. 30, № 1. P. 148–154. (in Russ.).

12. Aglulin A.G. Kinetics and some questions of the mechanism of the reaction of oxidative chlorination of methane on trehgerous copper-containing salt.: PhD dissertation. Moskva: NIFHI im. L.Ya. Karpova, 1979. (in Russ.).

13. Aglulin A.G. Kinetics and mechanism of hydrogen chloride oxidation on copper-containing salt catalysts. I. Kinetics of HCl oxidation in Deacon reaction and reaction of oxychlorination of methane on a coppercatalyzed salt catalyst// Kinetika i kataliz (Kinetics and Catalysis). 2014. V. 55, № 5. P. 599–609. (in Russ.).

14. Aglulin A.G. Kinetics and mechanism of hydrogen chloride oxidation on copper-containing salt catalysts. Kinetics of HCl oxidation in Deacon reaction and reaction of oxychlorination of methane on a catalyst CuCl2–KCl–LaCl3 // Kinetika i kataliz (Kinetics and Catalysis). 2014. V. 55, № 5. P. 610–620. (in Russ.).

15. Slama I., Kodejš Z. Oxidation of hydrogen chloride with oxygen, catalysed by copper chlorides deposited on a carrier // Collect. Czech. Chem. Commun. 1970. V. 36. P. 2691–2697.

16. Ruthven D.M., Kenney C.N. The kinetics of oxygen absorption in molten salts containing cuprous chloride // Chem. Eng. Sci. 1967. V. 22, № 12. P. 1561–1576.

17. Shahovceva G.A., Vasil'eva I.B., Avetisov A.K., Gel'bshtejn A.I. Kinetics and mechanism of catalytic oxidation of hydrogen chloride. // Kinetika i kataliz (Kinetics and Catalysis).1970. V. 11. P. 1469–1478. (in Russ.).

18. Duderov G.N. Praktikum on ceramics and refractory technology. Moscow, 1953. (in Russ.).

19. Treger Yu.A., Rozanov V.N., Silina I.S., Murashova O.P., Yas'kova V.Ya., Bruk L.G. Study of the process of oxidative chlorination of methane at the elevated pressure // Vestnik MITHT (Fine Chem. Technol.). 2013. V. 8, № 3. P. 95–98. (in Russ.).

20. Katsman E.A., Berenblyum A.S. Programs for the modeling and analysis of kinetic models and its application. Moscow: MITHT, 2010. 48 p. (in Russ.).

21. Rouco A.J. Low-temperature ethylene oxyhydrochlorination: effects of supports and promoters on the mobilities of active species in CuСl2 catalysts // J.Catalysis. 1995. V. 157, № 2. P. 380–387.

22. Xueju L.D., Jie L.D., Guangdong Z.D., Kaiji Z.D., Wenxing L., Tiexin C. Ethane oxychlorination over γ-Al2O3 supported CuCl2–KCl–LaCl3 // Catalysis Lett.2005. V. 100, № 3-4. Р. 153–159.

23. Muddada N.B., Olsbye U., Leofanti G., Gianolio D., Bonino F., Bordiga S., Fuglerud T., Vidotto S., Marsella A., Lamberti C. Quantification of copper phases, their reducibility and dispersion in doped-CuCl2/Al2O3 catalysts for ethylene oxychlorination // Dalton Trans. 2010. V. 39. P. 8437–8449.

24. Podkolzin S., Stangland E., Jones M., Peringer E., Lercher J.A. Methyl chloride production from methane over lanthanum-based catalysts // J. Am. Chem. Soc. 2007. V. 129, № 9. P. 2569–2576.

25. Rozanov V.N., Aglulin A.G. Kinetics and mechanism of oxidative hydrolysis of chloromethanes in the reaction of methane oxychlorination // Abstracts of V All-Union Conference "Current state and prospects of development of theoretical bases of organochlorine products' production". Baku, 1991. P. 116–117. (in Russ.).


For citation:


Silina I.S., Katsman Е.А., Treger Yu.A., Rozanov V.N., Iskhakova L.D., Ermakov R.P., Koltashev V.V., Bruk L.G. KINETICS OF OXIDATIVE CHLORINATION OF METHANE. Fine Chemical Technologies. 2017;12(2):50-61. (In Russ.) https://doi.org/10.32362/2410-6593-2017-12-2-50-61

Views: 183


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)