Preview

Fine Chemical Technologies

Advanced search

INTERNAL ENERGY SAVING IN DISTILLATION COLUMNS WITH REAL PLATES AND IN FILLED DISTILLATION COLUMNS

https://doi.org/10.32362/2410-6593-2017-12-2-42-49

Full Text:

Abstract

Perspective ways of power saving in the distillation of liquid mixtures are considered. The phenomenon of internal energy saving on theoretical plates is considered in detail. As shown in this article, the phenomenon depends on the number of theoretical plates in the rectifying and stripping sections of the column and also on the aggregative state of the feed mixture. The processes of heat and mass transfer on real plates with various values of efficiency factor are considered. Blocks of real plates equivalent to one theoretical stage, that is, blocks where the leaving flows of the liquid and vapor are in equilibrium, are isolated. Analogically, heat and mass transfer in apparatuses with a continuous phase contact having a layer height providing one theoretical plate is considered. It is proved that internal energy saving in filled rectifying columns with real plates also depends on the number of theoretical plates and the aggregative state of the initial mixture.

About the Authors

М. К. Zakharov
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia


N. V. Lobanov
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia


References

1. Zakharov M.K. Energy saving ways used in high energy technological processes // Technologiinefti i gaza (Oil and gas technologies). 2006. № 1. P. 63–72. (in Russ.).

2. Komissarov Yu.A., Gordeev L.S., Vent D.P. Scientific basements of distillation processes // Ed. by L.A. Serafimov. In 2 vol. М.: Khimiya Publ., 2004. (in Russ.).

3. Halvorsen I.J., Skogestad S. Energy efficient distillation // J. Natural Gas Sci. and Eng. 2011. doi: 10.1016 / j.ngse.2011.06.002

4. Jang D.J., Kim Y.H. A new horizontal distillation for energy saving with a diabatic rectangular column // Korean J. Chem. Eng. 2015. V. 32. № 11. P. 2181–2186.

5. Timoshenko A.V., Anokhina E.A. Energysaving distillation of multicomponent mixtures in complex columns with side selection // Khimicheskaya promyshlennost’ (Chemical Industry). 2002. № 5. P. 3–6. (in Russ.).

6. Ziyatdinov N.N., Ostrovskii G.M., Emel’yanov I.I. Designing a heat exchange system upon the reconstruction and synthesis of optimal systems of distillation columns // Theoretical Foundations of Chemical Engineering. 2016. V. 50. № 2. P. 178–187.

7. Nakaiwa M., Ohmori T. Process intensification for energy savings through concept of «detuning» from ideal state // Synthesiology. 2009. V. 2. № 1. P. 51–59.

8. Nakaiwa M., Huang K., Endo A., Ohmori T., Akiya T., Takamatsu T. Internally heat-integrated distillation columns: A review // Chem. Eng. Res. Design. 2003. V. 81. № 1. P. 162–177.

9. Kim Y.H. Energy saving and thermodynamic efficiency of a double-effect distillation column using internal heat integration // Korean J. Chem. Eng. 2012. V. 29. № 12. P. 1680–1687.

10. Zakharov M.K., Moiseeva E.D. Multicolumn distillation as a way to save energy during separation of zeotropic binary mixtures // Khimicheskaya promyshlennost’ (Chemical Industry). 2003. № 9. P. 35–42. (in Russ.).

11. Sun L., Li J., Liu X., Li Q. Research on configurations of thermally integrated distillation column (TIDC) // China University of Petroleum. 2011. V. 1. № 143. P. 335–339.

12. Saxena N., Mali N., Satpute S. Study of thermally coupled distillation systems for energyefficient distillation // Indian Academy of Sciences. 2017. V. 42. № 1. P. 119–128.

13. Zakharov M.K. Energy-saving analysis in distillation processes // Khimicheskaya tekhnologiya (Chemical Technology). 2008. V. 9. № 4. P. 177–182. (in Russ.).

14. L’vov S.V. About distillation energy consumption dependence on initial mixture’s physical state (energy level) // In book:. Fiziko-khimicheskie osnovy rektifikatsii (Physico-chemical basements of distillation) / Ed. by S.V. L’vov. M.: MITHT, 1970. P. 292–300. (in Russ.).

15. Zakharov M.K. Energy efficiency of distillation process // Tonkie khimicheskie tekhnologii (Fine Chem. Technol.). 2015. V. 10. № 1. P. 29–33. (in Russ.).

16. Anokhina E., Timoshenko A..Criterion of the energy effectiveness of extractive distillation in the partially thermally coupled columns // Chemical Engineering Research and Design. 2015. № 99. P. 165–175.

17. Skoblo A.I., Molokanov Yu.K., Vladimirov A.I., Schelkunov V.A. Processes and apparatus of oil and gas processing and chemistry. Textbook. М.: Izdatelsky tsentr RGU nefti i gaza im. I.M. Gubkina (RGUNG named after Gubkin’s Publish Center), 2012. 726 p. (in Russ.).

18. Zakharov M.K., Martynova M.M., Prusachenkova M.I. Energy consumption comparison of distillation and rectification during separation of binary mixtures // Khimicheskaya tekhnologiya (Chemical Technology). 2017. V. 18. № 1. P. 43–47 (in Russ.).

19. Boyarchuk P.G., Golberg Yu.E., Serafimov L.A. Bubbling layer depth’s influence on bubble-cap tray efficiency // Khimiya i tekhnologiya topliv i masel (Fuel and Oil Chemistry and Technology). 1968. № 5. P. 41–44. (in Russ.).

20. Kasatkin A.G., Planovskiy A.N., Chekhov O.S. Calculation of distillation and absorption plate apparatus. М: Standartgiz (State Standard Publishing Center), 1961. 80 p. (in Russ.).


For citation:


Zakharov М.К., Lobanov N.V. INTERNAL ENERGY SAVING IN DISTILLATION COLUMNS WITH REAL PLATES AND IN FILLED DISTILLATION COLUMNS. Fine Chemical Technologies. 2017;12(2):42-49. (In Russ.) https://doi.org/10.32362/2410-6593-2017-12-2-42-49

Views: 191


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)