Preview

Fine Chemical Technologies

Advanced search

STRUCTURAL DYNAMICS OF FREE MOLECULES AND CONDENSED MATTER. Part I. THEORY AND EXPERIMENTAL TECHNIQUE

https://doi.org/10.32362/2410-6593-2017-12-2-5-33

Full Text:

Abstract

To understand the dynamic features of molecular systems with a complex landscape of potential energy surfaces, it is necessary to study them in the associated 4D space-time continuum. The introduction of time in the diffraction methods and the development of coherent principles of the research process opened up new approaches for the study of the dynamics of wave packets, intermediates and transient states of the chemical reactions, short-lived compounds in the gaseous and condensed media. Time-resolved electron diffraction, the new method for the structural dynamic studies of free molecules, clusters and condensed matter, differs from the traditional method of electron diffraction both in the experimental part and in the theoretical approaches used in the interpretation of diffraction data. Here there is particularly pronounced the need of a corresponding theoretical basis for the processing of the electron diffraction data and the results of spectral investigations of the coherent dynamics in the field of intense ultrashort laser radiation. Such unified and integrated approach can be formulated using the adiabatic potential energy surfaces of the ground and excited states of the systems under study. The combination of state-of-the-art optical techniques and electron diffraction methods based on different physical phenomena, but complementing each other, opens up new possibilities of the structural studies at time sequences of ultrashort duration. It provides the required integration of the triad, "structure - dynamics - functions" in chemistry, biology and materials science.

About the Authors

A. A. Ischenko
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia


Y. I. Tarasov
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia


L. Schäfer
University of Arkansas
United States
Fayetteville, AR, U.S.A., AR72701


References

1. Ischenko A.A. [et al.] A stroboscopical gaselectron diffraction method for the investigation of shortlived molecular species // Appl. Phys. B Photophysics Laser Chem. 1983. V. 32, № 3. P. 161–163.

2. Ischenko A.A. [et al.] The observation of electron diffraction from free radicals – products of the IR multiphoton dissociation of CF3I molecules by stroboscopic gas electron diffraction // Bull. Moscow Univ. Ser 2. Chem. 1985. V. 26, № 2. P. 140–143.

3. Ischenko A.A. [et al.] The study of shortlived intermediate species and structural kinetics of photoexcited molecules by stroboscopic electron diffraction // Interuniversity collection of scientific papers. The Structure and Properties of Molecules. Ivanovo, 1988. P. 63–77.

4. Vabishchevich M.G., Ischenko A.A. Method of studying the kinetics of fast processes; USSR Certificate number 1679907. Registered in the State Register of Inventions of the USSR on May 22, 1991. Priority of invention October 14, 1988.

5. Norrish R.G.W., Porter G. Chemical reactions produced by very high light intensities // Nature. 1949. V. 164, № 4172. P. 658–658.

6. Tomov I.V. [et al.] Picosecond hard X-ray pulses and their application to time-resolved diffraction // Timeresolved diffraction / ed. Helliwell J.R., Rentzrpis P.M. Oxford: Clarendon Press, 1997. P. 1–43.

7. Ischenko A.A., Girichev G.V., Tarasov Y.I. Electron diffraction: structure and dynamics of free molecules and condensed matter. Moscow: FIZMATLIT, 2013. 616 p.

8. Ischenko A.A., Aseyev S.A. Time resolved electron diffraction: for chemistry, biology and material science. San Diego: Elsevier, 2014. 310 p.

9. Minitti M.P. [et al.] Toward structural femtosecond chemical dynamics: imaging chemistry in space and time // Faraday Discuss. 2014. V. 171. P. 81–91.

10. Ischenko A.A. [et al.] The stroboscopic gas electron diffraction method for investigation of timeresolved structural kinetics in photoexcitation processes // J. Mol. Struct. Elsevier, 1993. V. 300. P. 115–140.

11. Ewbank J.D., Schäfer L., Ischenko A.A. Structural and vibrational kinetics of photoexcitation processes using time resolved electron diffraction // J. Mol. Struct. 2000. V. 524, № 1. P. 1–49.

12. Ruan C.-Y. [et al.] The Development and Applications of Ultrafast Electron Nanocrystallography // Microsc. Microanal. 2009. V. 15, № 4. P. 323–337.

13. Weber P.M., Carpenter S.D., Lucza T. Reflectron design for femtosecond electron guns // Proc. SPIE 2521, Time-Resolved Electron and X-Ray Diffraction, 23 (September 1, 1995) / ed. Rentzepis P.M. 1995. № 2521. P. 23–30.

14. King W.E. [et al.] Ultrafast electron microscopy in materials science, biology, and chemistry // J. Appl. Phys. 2005. V. 97, № 11. P. 111101, 1–27.

15. Zewail A.H. Ultrafast electron diffraction, crystallography, and microscopy // Annu. Rev. Phys. Chem. 2006. V. 57, № 1. P. 65–103.

16. Zewail A.H. Four-dimensional electron microscopy // Science (80-. ). 2010. V. 328, № 5975. P. 187–193.

17. Zewai A.H., Thomas J.M. 4D electron microscopy. Imaging in space and time. Imperial College Press, 2010. 360 p.

18. Ischenko A.A. Molecular tomography of the quantum state by time-resolved electron diffraction // Phys. Res. Int. 2013. V. 2013. P. 1–8.

19. Sciaini G., Miller R.J.D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics // Reports Prog. Phys. 2011. V. 74, № 9. P. 096101 (1–36).

20. Ischenko A.A., Bagratashvili V.N., Avilov A.S. Methods for studying the coherent 4D structural dynamics of free molecules and condensed state of matter: article // Crystallogr. Reports. 2011. V. 56, № 5. P. 751.

21. Miller R.J.D. Mapping atomic motions with ultrabright electrons: the chemists’ gedanken experiment enters the lab frame // Annu. Rev. Phys. Chem. 2014. V. 65, № 1. P. 583–604.

22. Miller R.J.D. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action // Science (80-. ). 2014. V. 343, № 6175. P. 1108–1116.

23. Ischenko A.A. [et al.] Ultrafast electron diffraction and electron microscopy: present status and future prospects // Physics-Uspekhi. 2014. V. 57, № 7. P. 633–669.

24. Campbell G.H., McKeown J.T., Santala M.K. Time resolved electron microscopy for in situ experiments // Appl. Phys. Rev. 2014. V. 1, № 4. P. 41101.

25. Kim K.T., Villeneuve D.M., Corkum P.B. Manipulating quantum paths for novel attosecond measurement methods // Nat. Photonics. 2014. V. 8, № 3. P. 187–194.

26. Petek H. Single-molecule femtochemistry: molecular imaging at the space-time limit // ACS Nano. 2014. V. 8, № 1. P. 5–13.

27. Manz S. [et al.] Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution // Faraday Discuss. 2015. V. 177. P. 467–491.

28. Robinson M.S., Lane P.D., Wann D.A. A compact electron gun for time-resolved electron diffraction // Rev. Sci. Instrum. 2015. V. 86, № 1. P. 13109.

29. Plemmons D.A., Suri P.K., Flannigan D.J. Probing structural and electronic dynamics with ultrafast electron microscopy // Chem. Mater. 2015. V. 27, № 9. P. 3178–3192.

30. Bonham R.A., Fink M. High energy electron scattering. New York: Van Nostrand Reinhold, 1974. 311 p.

31. Hargittai I. The gas-phase electron diffraction technique of molecular structure determination // Stereochemical applications of gas-phase electron diffraction. Part A. The electron diffraction technique / ed. Hargittai I., Hargittai М. New York: VCH, 1988. P. 1–54.

32. Ischenko A.A., Schäfer L., Ewbank J.D. Structural kinetics by time-resolved gas electron diffraction: coherent nuclear dynamics in laser excited spatially anisotropic molecular ensembles // J. Mol. Struct. 1996. V. 376, № 1-3. P. 157–171.

33. Ischenko A.A., Schäfer L., Ewbank J. Timeresolved electron diffraction: a method to study the structural vibrational kinetics of photoexcited molecules // Time-resolved diffraction 13 / ed. Helliwell J.R., Rentzepis P.M. Oxford University Press, 1997. P. 323–390.

34. Debye P. Тhe influence of intramolecu1ar atomic motion оп electron diffraction diagrams // J. Chem. Phys. 1941. V. 9, № 1. P. 55–60.

35. Bialynicki-Birula I. [et al.] Theory of quanta. New York: Oxford University Press, 1992. 494 p.

36. Cohen-Tannoudji C., Diu B., Laloë F. Quantum mechanics. V. 1. Wiley, 1977. 914 p.

37. Ewbank J.D., Schäfer L., Ischenko A.A. Structural kinetics by stroboscopic gas electron diffraction 2. Time-dependent molecular intensities of predissociation processes // J. Mol. Struct. Elsevier, 1994. V. 321, № 3. P. 265–278.

38. Tikhonov A.N., Arsenin V.Y. Solution of the illposed problems. New York: Halsted Press, 1977. 256 p.

39. Ryu S., Weber P.M., Stratt R.M. The diffraction signatures of individual vibrational modes in polyatomic molecules // J. Chem. Phys. 2000. V. 112, № 3. P. 1260–1270.

40. Ryu S., Stratt R.M., Weber P.M. Diffraction signals of aligned molecules in the gas phase: tetrazine in intense laser fields // J. Phys. Chem. A. 2003. V. 107, № 34. P. 6622–6629.

41. Ryu S. [et al.] Electron diffraction of molecules in specific quantum states: a theoretical study of vibronically excited s-tetrazine // J. Phys. Chem. A. 2004. V. 108, № 7. P. 1189–1199.

42. Weber P.M. [et al.] Experimental and theoretical studies of pump-probe electron diffraction: timedependent and state-specific signatures in small cyclic molecules // Femtochemistry and Femtobiology. Elsevier, 2004. P. 19–24.

43. Zewail A.H. Femtochemistry: ultrafast dynamics of the chemical bond. World Scientific Publishing Company, 1994. V. 3.

44. Zewail A.H. Femtochemistry: recent progress in studies of dynamics and control of reactions and their transition states // J. Phys. Chem. 1996. V. 100, № 31. P. 12701–12724.

45. Zewail A.H. Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture) // Angew. Chem. Int. Ed. Engl. 2000. V. 39, № 15. P. 2586–2631.

46. Zewail A.H. Femtochemistry: atomic-scale dynamics of the chemical bond // J. Phys. Chem. A. American Chemical Society. 2000. V. 104, № 24. P. 5660–5694.

47. Buchachenko A.L. Chemistry on the border of two centuries – achievements and prospects // Russ. Chem. Rev. 1999. V. 68, № 2. P. 85–102.

48. Neutze R. [et al.] Potential for biomolecular imaging with femtosecond X-ray pulses // Nature. 2000. V. 406, № 6797. P. 752–757.

49. Chapman H.N. [et al.] Femtosecond diffractive imaging with a soft-X-ray free-electron laser // Nat. Phys. 2006. V. 2, № 12. P. 839–843.

50. Bogan M.J. [et al.] Single particle X-ray diffractive imaging // Nano Lett. 2008. V. 8, № 1. P. 310–316.

51. Bogan M.J. [et al.] Single-particle coherent diffractive imaging with a soft X-ray free electron laser: towards soot aerosol morphology: JOUR // J. Phys. B. At. Mol. Opt. Phys. 2010. V. 43, № 19. P. 194013.

52. Yoon C.H. [et al.] Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering // Opt. Express. 2011. V. 19, № 17. P. 16542–16549.

53. Baskin J.S., Zewail A.H. Ultrafast electron diffraction: oriented molecular structures in space and time // ChemPhysChem. 2005. V. 6, № 11. P. 2261–2276.

54. Williamson J.C., Zewail A.H. Ultrafast electron diffraction. 4. Molecular structures and coherent dynamics // J. Phys. Chem. 1994. V. 98, № 11. P. 2766–2781.

55. Hoshina K. [et al.] Direct observation of molecular alignment in an intense laser field by pulsed gas electron diffraction I: observation of anisotropic diffraction image // Chem. Phys. Lett. 2002. V. 353, № 1–2. P. 27–32.

56. Hoshina K. [et al.] Direct observation of molecular alignment in an intense laser field by pulsed gas electron diffraction II: analysis of anisotropic diffraction image // Chem. Phys. Lett. 2002. V. 353, № 1-2. P. 33–39.

57. Hoshina K. [et al.] Alignment of CS2 in intense nanosecond laser fields probed by pulsed gas electron diffraction // J. Chem. Phys. 2003. V. 118, № 14. P. 6211–6221.

58. Spence J.C.H., Doak R.B. Single molecule diffraction // Phys. Rev. Lett. 2004. V. 92, № 19. P. 198102 (1-4).

59. Reckenthaeler P. [et al.] Time-resolved electron diffraction from selectively aligned molecules // Phys. Rev. Lett. 2009. V. 102, № 21. P. 213001–213004.

60. Bergsma J.P. [et al.] Transient X-ray scattering calculated from molecular dynamics // J. Chem. Phys. 1986. V. 84, № 11. P. 6151–6160.

61. Zare R.N. Angular momentum: understanding spatial aspects in chemistry and physics // Physics Today. New York: Wiley, 1988. 349 p.

62. Choi S.E., Bernstein R.B. Theory of oriented symmetric-top molecule beams: Precession, degree of orientation, and photofragmentation of rotationally stateselected molecules // J. Chem. Phys. 1986. V. 85, № 1. P. 150–161.

63. Gradstein I.S., Ryzhik I.M. Table of integrals, series, and products. New York: Academic Press, 2014. 1184 p.

64. Handbook of mathematical functions with formulas, graphs, and mathematical tables / ed. Abramowitz M., Stegun I.A. Washington, D.C.: National Bureau of Standards, 1965. 1058 p.

65. Vetchinkin S.I. [et al.] Gaussian wavepacket dynamics in an anharmonic system // Chem. Phys. Lett. 1993. V. 215, № 1–3. P. 11–16.

66. Eryomin V.V., Kuz’menko N.E., Umanskii I.M. Interference effects in wave packet dynamics at the pulse optical excitation of a diatomic molecule // Russ. J. Phys. Chem. B (Khimicheskaya Fizika) 1996. V. 15, № 5. P. 5–12 (in Russ.).

67. Kosloff R. Time-dependent quantummechanical methods for molecular dynamics // J. Phys. Chem. 1988. V. 92, № 8. P. 2087–2100.

68. Kosloff R. [et al.] Wavepacket dancing: Achieving chemical selectivity by shaping light pulses // Chem. Phys. 1989. V. 139, № 1. P. 201–220.

69. Balint-Kurti G.G., Dixon R.N., Marston C.C. Grid methods for solving the Schrödinger equation and time dependent quantum dynamics of molecular photofragmentation and reactive scattering processes // Int. Rev. Phys. Chem. 1992. V. 11, № 2. P. 317–344.

70. Stolow A., Underwood J.G. Time-resolved photoelectron spectroscopy of nonadiabatic dynamics in polyatomic molecules // Advances in Chemical Physics, Volume 139 / ed. Rice S.A. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2008. P. 497–584.

71. Rapp D., Kassal T. Theory of vibrational energy transfer between simple molecules in nonreactive collisions // Chem. Rev. 1969. V. 69, № 1. P. 61–102.

72. Levine R.D. Molecular reaction dynamics: book. Cambridge University Press, 2009. 555 p.

73. Herzberg G. Molecular spectra and molecular structure. III. Electronic spectra and electronic structure of polyatomic molecules: book. Van Nostrand, 1966. 784 p.

74. Rosker M.J., Dantus M., Zewail A.H. Femtosecond real-time probing of reactions. I. The technique // J. Chem. Phys. 1988. V. 89, № 10. P. 6113–6127.

75. Khundkar L.R., Zewail A.H. Ultrafast molecular reaction dynamics in real-time:pProgress over a decade // Annu. Rev. Phys. Chem. 1990. V. 41, № 1. P. 15–60.

76. Okabe H. Photochemistry of small molecules: book. Wiley, 1978.

77. Baronavski A.P. Laser ultraviolet photochemistry: book // Lasers as reactants and probes in chemistry / ed. Jackson W.M., Harvey A.B. Washington, D.C.: Howard University Press, 1985. P. 81.

78. Stereochemical applications of gas-phase electron diffraction. Part A. The electron diffraction technique: book / ed. Hargittai I., Hargittai M. VCH Publishers, 1988.

79. Garraway B.M., Suominen K.-A. Wave-packet dynamics: new physics and chemistry in femto-time // Reports Prog. Phys. 1995. V. 58, № 4. P. 365–419.

80. Heller E.J. Time-dependent approach to semiclassical dynamics // J. Chem. Phys. 1975. V. 62, № 4. P. 1544–1555.

81. Heller E.J. Potential surface properties and dynamics from molecular spectra: a time-dependent picture // Potential energy surfaces and dynamics calculations. Boston, MA: Springer US, 1981. P. 103–131.

82. Heller E.J. Quantum localization and the rate of exploration of phase space // Phys. Rev. A. 1987. V. 35, № 3. P. 1360–1370.

83. Ischenko A.A., Ewbank J.D., Schäfer L. Structural kinetics by stroboscopic gas electron diffraction Part 1. Time-dependent molecular intensities of dissociative states // J. Mol. Struct. 1994. V. 320. P. 147–158.

84. Schafer L. [et al.] Photodissociation dynamics of randomly oriented molecular ensembles by timeresolved electron diffraction // Izv. Vyss. Uchebn. Zaved. Khim. Khim. Tekhnol. 2016. V. 59, № 12. P. 22–31 (in Russ.).

85. Kemble E.C. The fundamental principles of quantum mechanics: with elementary applications: book. Dover Publications, 2005. 611 p.

86. Ballentine L.E. Quantum mechanics. A modern development. Singapore: World Scienlifie Publishing Co. Pte. Lid., 1998. 658 p.

87. Wigner E. On the quantum correction for thermodynamic equilibrium // Phys. Rev. 1932. V. 40, № 5. P. 749–759.

88. Yourgrau W., Van Der Merwe A., Landé A. Perspectives in quantum theory: book. Dover Publ., 1979. 283 p.

89. Hillery M. [et al.] Distribution functions in physics: fundamentals // Phys. Rep. 1984. V. 106, № 3. P. 121–167.

90. Hillery M. [et al.] Distribution functions in physics: fundamentals: in book // Part I: Physical Chemistry. Part II: Solid State Physics / ed. Wightman A.S. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. P. 273–317.

91. Cahill K.E., Glauber R.J. Density operators and quasiprobability distributions // Phys. Rev. 1969. V. 177, № 5. P. 1882–1902.

92. Freenberg E. The scattering of slow electrons in neutral atoms. Harvard University, 1933. 125 p.

93. Weigert S. How to determine a quantum state by measurements: The Pauli problem for a particle with arbitrary potential // Phys. Rev. A. 1996. V. 53, № 4. P. 2078–2083.

94. Williamson J.C. [et al.] Clocking transient chemical changes by ultrafast electron diffraction: JOUR // Nature. 1997. V. 386, № 6621. P. 159–162.

95. Ihee H., Zewail A.H., Goddard W.A. Conformations and barriers of haloethyl radicals (CH2XCH2 , X = F, Cl, Br, I): Ab Initio Studies // J. Phys. Chem. A. 1999. V. 103, № 33. P. 6638–6649.

96. Ihee H., Kua J., Zewail A.H. CF2XCF2X and CF2XCF2 • radicals (X = Cl, Br, I): ab initio and DFT studies and comparison with experiments // J. Phys. Chem. A. 2001. V. 105, № 14. P. 3623–3632.

97. Tannor D.J., Rice S.A. Control of selectivity of chemical reaction via control of wave packet evolution // J. Chem. Phys. 1985. V. 83, № 10. P. 5013–5018.

98. Yan Y.J., Mukamel S. Femtosecond pump-probe spectroscopy of polyatomic molecules in condensed phases // Phys. Rev. A. 1990. V. 41, № 11. P. 6485–6504.

99. Yan Y.J. [et al.] Optical control of molecular dynamics: Liouville-space theory // J. Phys. Chem. 1993. V. 97, № 10. P. 2320–2333.

100. Krause J.L. [et al.] Optical control of molecular dynamics: Molecular cannons, reflectrons, and wavepacket focusers // J. Chem. Phys. 1993. V. 99, № 9. P. 6562–6578.

101. Krause J.L. [et al.] Light packet control of wave packet dynamics // Femtosecond Chemistry / ed. Manz J., Woste L. Weihnheim: VCH Publishers, 1995. P. 743–779.

102. Krause J.L. [et al.] Creating and detecting shaped rydberg wave packets // Phys. Rev. Lett. 1997. V. 79, № 25. P. 4978–4981.

103. Ischenko A.A., Ewbank J.D., Schafer L. Structural and vibrational kinetics by time-resolved gas electron diffraction: stochastic approach to data analysis // J. Phys. Chem. 1995. V. 99, № 43. P. 15790–15797.

104. Leonhardt U. State reconstruction of anharmonic molecular vibrations: Morse-oscillator model // Phys. Rev. A. 1997. V. 55, № 4. P. 3164–3172.

105. Ischenko A.A. The study of coherent dynamics of the nuclei by time-resolved electron diffraction. II. The scattering of electrons by coherently excited molecules // Russ. Trans. Chem. Chem. Technol. 2009. V. 52, № 8. P. 59–63.

106. Ischenko A.A. The study of coherent dynamics of the nuclei by time-resolved electron diffraction. III. Molecular quantum state tomography // Russ. Trans. Chem. Chem. Technol. 2009. V. 52, № 9. P. 62–66.

107. Natterer F. The mathematics of computerized tomography: book. Vieweg+Teubner Verlag, 2013. 222 p.

108. Leonhardt U. Discrete Wigner function and quantum-state tomography. // Phys. Rev. A, At. Mol. Opt. Phys. 1996. V. 53, № 5. P. 2998–3013.

109. Leonhardt U. Measuring the quantum state of light. Cambridge: Cambridge University Press, 1997. 208 p.

110. Munroe [et al.] Photon-number statistics from the phase-averaged quadrature-field distribution: Theory and ultrafast measurement. // Phys. Rev. A. At. Mol. Opt. Phys. 1995. V. 52, № 2. P. R924–R927.

111. de Groot S.R., Suttorp L.G. Foundations of electrodynamics: book. North-Holland, 1972. 535 p.

112. Richter T. Pattern functions used in tomographic reconstruction of photon statistics revisited // Phys. Lett. A. 1996. V. 211, № 6. P. 327–330.

113. Richter T. Direct sampling of a smoothed Wigner function from quadrature distributions // J. Opt. B Quantum Semiclassical Opt. 1999. V. 1, № 6. P. 650–654.

114. Richter T., Wünsche A. Determination of quantum state from time-dependent position distributions // Acta Phys. Slovaca. 1996. V. 46. P. 487–494.

115. Leonhardt U. [et al.] Sampling of photon statistics and density matrix using homodyne detection // Opt. Commun. 1996. V. 127, № 1-3. P. 144–160.

116. Leonhardt U., Raymer M.G. Observation of moving wave packets reveals their quantum state // Phys. Rev. Lett. 1996. V. 76, № 12. P. 1985–1989.

117. Leonhardt U., Schneider S. State reconstruction in one-dimensional quantum mechanics: The continuous spectrum // Phys. Rev. A. 1997. V. 56, № 4. P. 2549–2556.

118. Leonhardt U. Optical conformal mapping // Science (80-. ). 2006. V. 312, № 5781. P. 1777–1780.

119. Messiah A. Quantum mechanics: book. Dover Publications, 2014. 1152 p.

120. Ischenko A.A., Schäfer L., Ewbank J.D. Manifestation of chaotic nuclear dynamics of highly excited polyatomic molecules in time-resolved electron diffraction data // J. Phys. Chem. A. 1998. V. 102, № 37. P. 7329–7332.

121. Todd T.R., Olson W.B. The infrared spectra of 12C32S, 12C34S, 13C32S, and 12C33S // J. Mol. Spectrosc. 1979. V. 74, № 2. P. 190–202.

122. Tzeng W.-B. [et al.] A 193 nm laser photofragmentation time-of-flight mass spectrometric study of CS2 and CS2 clusters // J. Chem. Phys. 1988. V. 88, № 3. P. 1658–1669.

123. Ischenko A.A. [et al.] Stroboscopic gas electron diffraction: a tool for structural kinetic studies of laserexcited molecules // Time-Resolved Electron and X-Ray Diffraction, v. 2521 / ed. Rentzepis P.M. 1995. P. 123–135.

124. Schelev M.Y. 500-fs photoelectron gun for time-resolved electron diffraction experiments // Opt. Eng. 1998. V. 37, № 8. P. 2249–2254.

125. Lobastov V.A. [et al.] Instrumentation for timeresolved electron diffraction spanning the time domain from microseconds to picoseconds // Rev. Sci. Instrum. 1998. V. 69, № 7. P. 2633–2643.

126. Hebeisen C.T. [et al.] Femtosecond electron pulse characterization using laser ponderomotive scattering // Opt. Lett. 2006. V. 31, № 23. P. 3517–3520.

127. Hebeisen C.T. [et al.] Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses // Opt. Express. 2008. V. 16, № 5. P. 3334–3341.

128. Hebeisen C.T. [et al.] Characterization of ultrashort electron pulses: in book // Ultrafast Phenomena XV: Proceedings of the 15th Int. Conference, Pacific Grove, USA, July 30 – August 4, 2006 / ed. Corkum P. [et al.] Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2007. P. 758–760.

129. Gahlmann A., Tae Park S., Zewail A.H. Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions // Phys. Chem. Chem. Phys. 2008. V. 10, № 20. P. 2894.

130. Glinec Y. [et al.] Generation of quasimonoenergetic electron beams using ultrashort and ultraintense laser pulses // Laser Part. Beams. 2005. V. 23, № 2.

131. Hommelhoff P. [et al.] Field emission tip as a nanometer source of free electron femtosecond pulses // Phys. Rev. Lett. 2006. V. 96, № 7. P. 77401.

132. Tellinghuisen J. Potentials for weakly bound states in I2 from diffuse spectra and predissociation data // J. Chem. Phys. 1985. V. 82, № 9. P. 4012–4016.

133. Akhmanov S.A. [et al.] Generation of the picosecond electron pulses of fast electrons in the EMR100 electron diffraction apparatus by photoemission in the laser field // Russ. J. Techn. Phys. Lett. 1985. V. 11, № 3. P. 157–161.

134. Bagratashvili V.N. [et al.] Isotopic selectivity of IR laser photodissociation of CF3 I molecules // Appl. Phys. 1979. V. 20, № 3. P. 231–235.

135. Golubkov V. V. [et al.] Pulse-resonance signal method for the recording of signal in a stroboscopic electron microscopy // XII Vsesoyuz. Konf. po Elektronnoi Mikroskopii, Sumy, Oktyabr’ 1982. Tezisy Dokladov (XII All-Union Conf. on Electron Microscopy, Sumy, October 1982, Abstracts). Moscow: Nauka, 1982. P. 62 (in Russ.).

136. Golubkov V. V. [et al.] New methods for the registration of the signal in gas electron diffraction // Izv. Akad. Nauk SSSR Ser. Fiz. 1983. V. 47. P. 1115–1121 (in Russ.).

137. Rood A.P., Milledge J. Combined flashphotolysis and gas-phase electron-diffraction studies of small molecules // J. Chem. Soc. Faraday Trans. 2. 1984. V. 80, № 9. P. 1145–1153.

138. Dudek R.C., Weber P.M. Ultrafast diffraction imaging of the electrocyclic ring-opening reaction of 1,3-cyclohexadiene // J. Phys. Chem. A. American Chemical Society. 2001. V. 105, № 17. P. 4167–4171.

139. Cardoza J.D. [et al.] Centering of ultrafast time-resolved pump–probe electron diffraction patterns // Chem. Phys. 2004. V. 299, № 2–3. P. 307–312.

140. Srinivasan R. [et al.] Ultrafast electron diffraction (UED) // Helv. Chim. Acta. 2003. V. 86, № 6. P. 1761–1799.

141. Goodman P. Fifty years of electron diffraction: in recognition of fifty years of achievement by the crystallographers and gas diffractionists in the field of electron diffraction: book / Published for the International Union of Crystallography by D. Reidel, 1981. 440 p.

142. Ihee H. [et al.] Ultrafast electron diffraction and structural dynamics: transient intermediates in the elimination reaction of C2F4I2 // J. Phys. Chem. A. 2002. V. 106, № 16. P. 4087–4103.

143. Mironov B.N. [et al.] Direct observation of the generation of coherent optical phonons in thin antimony films by the femtosecond electron diffraction method // JETP Lett. 2016. V. 103, № 8. P. 531–534.

144. Ischenko A.A., Schäfer L. Tarasov Yu.I., Ryabov E.A., Aseyev S.A. Ultrafast transmission electron microscopy // Tonkie khimicheskie tekhnologii (Fine Chem. Technol.). 2017. V. 12, № 1. P. 5–25.

145. Schelev M.Y. [et al.] Aspects of streak image tube photography (Advances in Imaging and Electron Physics, V. 180). Amsterdam: Academic Press, 2013.

146. Degtyareva V.P. [et al.] Femtosecond streak tubes designing, manufacturing, and testing // Proc. SPIE 4948, 25th Int. Congress on High-Speed Photography and Photonics, (1 August 2003) / ed. Cavailler C., Haddleton G.P., Hugenschmidt M. 2003. P. 281.

147. Degtyareva V.P. [et al.] Dynamic parameters evaluation for femtosecond streak tubes // Proc. SPIE 5580, 26th Int. Congress on High-Speed Photography and Photonics, (17 March 2005 / ed. Paisley D.L. [et al.] 2005. P. 416.

148. Andreev S.A. [et al.] The results of computer and experimental studies on compressing the ultrashort photoelectron bunches with time-dependent electric fields // Proc. SPIE 6279, 27th Int. Congress on HighSpeed Photography and Photonics January 2007 / ed. Hou X., Zhao W., Yao B. 2007. P. 6279 70.

149. Ageeva N. V. [et al.] Sub-100 fs streak tube: computer-aided design, manufacturing, and testing // Proc. SPIE 7126, 28th Int. Congress on High-Speed Imaging and Photonics, 71261B (10 February 2009) / ed. Kleine H., Butron Guillen M.P. 2009. P. 7126 1B.

150. Degtyareva V.P., Monastyrskiy M.A., Schelev M.Y. Chapter 11 // Electron Diffraction: Structure and Dynamics of Free Molecules and Condensed Matter. Moscow: FIZMATLIT, 2013. P. 499–522 (in Russ.).

151. Hansen P. [et al.] Dispersion compensation for attosecond electron pulses // Appl. Phys. Lett. 2012. V. 101, № 8. P. 83501.

152. Fortov V.E. Extreme states of matter on Earth and in space // Physics-Uspekhi. 2009. V. 52, № 6. P. 615–647.

153. Zewail A.H. The new age of structural dynamics // Acta Crystallogr. Sect. A. Found. Crystallogr. 2010. V. 66, № 2. P. 135–136.

154. Zewail A., Zewail M. Science for the “Haves” // Angew. Chemie Int. Ed. 2013. V. 52, № 1. P. 108–111.

155. Alidzhanov E.K. [et al.] Vacuum scanning tunnel microscope for conducting samples researching // Vestnik Orenburg. Gos. Univ. 2007. № 12. P. 150–153 (in Russ.).

156. Aseyev S.A. [et al.] Microscopy of photoionisation processes // Quantum Electron. 2013. V. 43, № 4. P. 308–312.

157. Grams M.P. [et al.] Microscopic fused silica capillary nozzles as supersonic molecular beam sources // J. Phys. D. Appl. Phys. 2006. V. 39, № 5. P. 930–936.

158. Workshop on ultrafast electron sources for diffraction and microscopy applications // UESDM-2012, December 12–14. Univ. of California, Los Angeles, USA, 2012.


For citation:


Ischenko A.A., Tarasov Y.I., Schäfer L. STRUCTURAL DYNAMICS OF FREE MOLECULES AND CONDENSED MATTER. Part I. THEORY AND EXPERIMENTAL TECHNIQUE. Fine Chemical Technologies. 2017;12(2):5-33. https://doi.org/10.32362/2410-6593-2017-12-2-5-33

Views: 254


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)