Водорастворимые магнитные наночастицы как потенциальные агенты для магнитной гипертермии
Аннотация
Об авторах
В. К. ХлебниковФранция
кафедра Биотехнологии и бионанотехнологии, магистрант; Центр по доставке лекарств и наномедицине
Х. М. Вишвасрао
Соединённые Штаты Америки
Центр по доставке лекарств и наномедицине, аспирант
М. А. Сокольская
Соединённые Штаты Америки
Центр по доставке лекарств и наномедицине, научный сотрудник
А. В. Кабанов
Соединённые Штаты Америки
Центр по доставке лекарств и наномедицине;
Лаборатория «Химический дизайн бионаноматериалов», директор
Список литературы
1. Zhen L., Meng L., Xinjian Y. , Meili Y., Jinsong R., Xiaogang Q. The use of multifunctional magnetic mesoporous core/shell heteronanostructures in a biomolecule separation system // J. Biomaterials. 2011. V. 32. № 21. P. 4683-4690.
2. Gupta R., Bajpai A. Magnetically guided release of ciprofloxacin from superparamagnetic polymer nanocomposites // J. Biomater. Sci. Polym. Ed. 2011. V. 22. № 7. P. 893-918.
3. Hergt R., Hiergeist R., Hilger I., Kaiser W. A., Lapatnikov Y., Margel S., Richter U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia // J. Magnetism & Magnetic Materials. 2003. V. 270. № 3. P. 345-357.
4. Haacke E.M., Cheng Norman Y.C., House M., Liu Q., Neelavalli J., Ogg R. J., Khan A., Ayaz M., Kirsch W., Obenaus A. Imaging iron stores in the brain using magnetic resonance imaging // J. Magnetic Resonance Imaging. 2005. V. 23. № 1. P. 1-25.
5. Fras L., Stana-Kleinschek K., Ribitsch V., Sfiligoj-Smole M., Kreze T. Quantitative determination of carboxylic groups in cellulose by complexometric titration // J. Lenzinger Berichte. 2005. V. 81. P. 80-88.
6. Park J., Lee E., Hwang N., Kang M., Kim S., Hwang Y., Park J., Noh H., Kim J., Park J., Hyeon T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles // J. Angew. Chem. Int. Ed. 2005. V. 44. № 19. P. 2872-2877.
7. Cai W., Wan J. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols // J. Colloid & Interface Sci. 2007. V. 305. № 2. P. 366-370.
8. http://omlc.ogi.edu/spectra/mb/index.html
9. Gonzales-Weimuller M., Zeisberger M., Krishnan K. M. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia // J. Magnetism & Magnetic Materials. 2009. V. 321. № 13. P. 1947-1950.
10. Purushotham S., Ramanujan R. V. Modeling the performance of magnetic nanoparticles in multimodal cancer therapy // J. Appl. Physics. 2010. № 107. P. 113701-113709.
11. Mornet S., Vasseur S., Grasset F., Veverka P., Goglio G., Demourgues A., Portier J., Pollert E., Duguet E. Magnetic nanoparticle design for medical applications // J. Progress in Solid State Chemistry. 2006. V. 34. № 2-4. P. 237-247.
12. Spratt J. S., Adcock R. A., Muskovin M., Sherrill W., McKeown J. Clinical delivery system for intraperitoneal hyperthermic chemotherapy // J. Cancer Res. 1980. № 40. P. 256.
Рецензия
Для цитирования:
Хлебников В.К., Вишвасрао Х.М., Сокольская М.А., Кабанов А.В. Водорастворимые магнитные наночастицы как потенциальные агенты для магнитной гипертермии. Тонкие химические технологии. 2012;7(1):64-68.
For citation:
Khlebnikov V.K., Vishwasrao H.M., Sokolskaya M.А., Kabanov A.V. Water-soluble magnetic nanoparticles as potential agents for magnetic hyperthermia. Fine Chemical Technologies. 2012;7(1):64-68. (In Russ.)