Preview

Тонкие химические технологии

Расширенный поиск

СВЕРХБЫСТРАЯ ПРОСВЕЧИВАЮЩАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ

https://doi.org/10.32362/2410-6593-2017-12-1-5-25

Полный текст:

Аннотация

Методы сверхбыстрой электронной дифракции, лазерной спектроскопии и квантовой химии, дополняя друг друга, открывают новые возможности изучения внутримолекулярной динамики веществ, участвующих в процессах химических реакций. Переходное состояние химических реакций определяет направление этих процессов. Начиная от первых работ 1980-х годов, выполненных в России и показавших принципиальную возможность исследования когерентной динамики ядер молекулярных систем, многие научные лаборатории в мире начали интенсивную разработку новой области исследований, направленную на экспериментальное исследование переходного состояния методом сверхбыстрой дифракции электронов. Последовательное развитие этого направления привело к созданию так называемого “атомно-молекулярного кино”, позволяющего визуализировать когерентную динамику ядер в молекулах и сверхбыстрые процессы в химических реакциях в режиме реального времени. В настоящее время ряд научно-исследовательских лабораторий в мире разрабатывают методы сверхбыстрой дифракции электронов и рентгеновского излучения, которые открыли возможность исследования переходного состояния химических реакций. Создание электронных микроскопов с высоким пространственно-временным разрешением является новым направлением в электронной микроскопии, близко примыкающим к этому новому направлению науки. Успешная реализация этого направления исследований демонстрирует потенциал ведущих национальных научно-исследовательских центров и их способность работать на переднем крае современной науки.

Об авторах

А. А. Ищенко
Московский технологический университет (Институт тонких химических технологий)
Россия

заведующий кафедрой

Москва, 119571 Россия



Ю. И. Тарасов
Московский технологический университет (Институт тонких химических технологий)
Россия

заведующий кафедрой

Москва, 119571 Россия



Е. А. Рябов
Институт спектроскопии РАН
Россия

заведующий отделом лазерной спектроскопии

Москва, Троицк,108840 Россия



С. А. Асеев
Институт спектроскопии РАН
Россия

ведущий научный сотрудник лаборатории спектроскопии ультрабыстрых процессов

Москва, Троицк,108840 Россия



Л. Шефер
Университет штата Арканзас
Соединённые Штаты Америки
Фэйтвилл, 72701, Арканзас, США


Список литературы

1. Hawkes P.W., Kasper E. Principles of Electron Optics. V. 1-3. London: Academic Press, 1996. 3710 р.

2. Fultz B., Howe J. Transmission Electron Microscopy and Diffractometry of Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. 761 p.

3. Parish C.M., Russell P.E. Scanning Cathodoluminescence Microscopy // Advances in Imaging and Electron Physics, V. 147. Elsevier / ed. P.W. Hawkes. Academic Press, 2007. V. 147. P. 1-135.

4. Zewai A.H., Thomas J.M. 4D Electron Microscopy. Imaging in Space and Time. London: Imperial College Press, 2010. 360 p.

5. Weinstein B.K. Atomic resolution electron microscopy // Sov. Phys. Uspechi Fiz. Nauk. 1987. V. 152. P. 75-122.

6. Brandon J., Kaplan W. Microstructure of Materials. Methods of Research and Monitoring. Moscow : Technosphere, 2004. 384 р.

7. Vlasov A.I., Yelsukov K.A., Kosolapov I.A. Electron microscopy // Library “Nanoengineering” in 17 Books. Book 11. Moscow: Publishing House of Moscow State Technical University named after Bauman, 2011. 168 p.

8. Vlasov A.I., Yelsukov K.A., Panfilov Y.V. Microscopy techniques // Library “Nanoengineering” in 17 Books. Book 1. Moscow: Publishing House of Moscow State Technical University named after Bauman, 2011. 280 p.

9. Shindo D., Oikawa T. Analytical transmission electron microscopy for materials science. Tokyo, Japan: Springer, 2002. 153 p.

10. Umansky Ya.S., Skakov Yu.A.., Ivanov A.N., Rastorgouev L.N. Crystallography, X-ray and electron microscopy. Moscow: Metallurgy, 1982. 632 p. (in Russ.).

11. Heidenreich R.D. Fundamentals of transmission electron microscopy. New York: Interscience Publishers, 1964. 414 p.

12. Hirsch P.B., Howie A., Nicholson R.B., Pashley D.W., Whelan M. J. Electron microscopy of Thin Crystals // Phys. Today. 1966. V. 19. № 10. P. 93-94.

13. Locquin M., Langeron M. Handbook of microscopy. London: Butterworths Company Ltd., 1983. 322 p.

14. Spence J.C.H.H. Experimental high-resolution electron microscopy. Oxford University Press, 1988. 427 p.

15. Watt I.M. The principles and practice of electron microscopy. Cambridge: Cambridge University Press, 1997. 484 p.

16. Knoll M., Ruska E. Das Electronenmikroscop // Zeitschrift für Phys. 1932. V. 78. № 5-6. P. 318-339.

17. Thomas G., Goringe M.. J. Transmission Electron Microscopy of Materials. New York: Wiley, 1979. 388 p.

18. Amelinks C. Methods of Direct Observation of Dislocations. Wiley, 1968. 440 р.

19. Hawkes P.W. The long road to spherical aberration correction // Common Sess. Microsc. New Tech. Improv. Microsc. (CST). Biol. Cell. 2001. V. 93. № 6. P. 432-433.

20. Muybridge E.J. Animal Locomotion, an Electrophotographic investigation of consecutive phases of animal movement. Philadelphia: J.B. Lippincott and Co.,1887.

21. King W.E., Campbell G.H., Frank A., Reed B., Schmerge J.F., Siwick B. J., Stuart B.C., Weber P.M. Ultrafast electron microscopy in materials science, biology, and chemistry // J. Appl. Phys. 2005. V. 97. № 11. P. 111101, 1-27.

22. Baskin J.S., Zewail A.H. Seeing in 4D with electrons: Development of ultrafast electron microscopy at Caltech // Comptes Rendus Phys. 2014. V. 15. № 2-3. P. 176-189.

23. Grinolds M.S., Lobastov V.A., Weissenrieder J., Zewail, A H. Four-dimensional ultrafast electron microscopy of phase transitions // Proc. Natl. Acad. Sci. 2006. V. 103. № 49. P. 18427-18431.

24. Aseyev S.A., Weber P.M., Ischenko A.A. Ultrafast Electron Microscopy for Chemistry, Biology and Material Science // J. Anal. Sci. Methods Instrum. 2013. V. 3. № 1. P. 30-53.

25. Hastings J.B., Rudakov F.M., Dowell D.H., Schmerge J.F., Cardoza J., Castro J.M., Gierman S.M., Loos H., Weber P.M. Ultrafast time-resolved electron diffraction with megavolt electron beams // Appl. Phys. Lett. 2006. V. 89. № 18. P. 184109-184111.

26. Rudakov F.M., Hastings J.B., Dowell D.H., Schmerge J.F., Weber P.M. Megavolt Electron Beams for Ultrafast Time-Resolved Electron Diffraction // Shock Compression of Condensed Matter / ed. M.D. Furnish, M. Elert, T.P. Russell, C.T. White. AIP, 2006. V. 845. P. 1287-1292.

27. Weber P.M., Carpenter S.D., Lucza T. Reflectron design for femtosecond electron guns // Proc. SPIE 2521, Time-Resolved Electron and X-Ray Diffraction, 23 (September 1, 1995) / ed. Rentzepis P.M. 1995. № 2521.

28. Kassier G.H., Haupt K., Erasmus N., Rohwer E.G., Schwoerer H. Achromatic reflectron compressor design for bright pulses in femtosecond electron diffraction // J. Appl. Phys. 2009. V. 105. № 11. P. 113111, 1-10.

29. Gliserin A., Walbran M., Krausz F., Baum P. Subphonon-period compression of electron pulses for atomic diffraction // Nat. Commun. 2015. V. 6. P. 8723, 1-8.

30. Santala M.K., Reed B.W., Raoux S., Topuria T., LaGrange T., Campbell, G.H. Irreversible reactions studied with nanosecond transmission electron microscopy movies: Laser crystallization of phase change materials // Appl. Phys. Lett. 2013. V. 102. № 17. P. 174105-174108.

31. Tokita S., Hashita M., Inoue S., Nishoji T., Otani K., Skabe S. Single-Shot Femtosecond Electron Diffraction with Laser-Accelerated Electrons: Experimental Demonstration of Electron Pulse Compression // Phys. Rev. Lett. 2010. V. 105. № 21. P. 215004-215007.

32. Motosuke M., Tetsuya S. Stroboscopic scanning electron microscope: pat. 4538065 USA. Appl. № 470632; 28.02.1983. Date of Patent 27.08.1985

33. Spivak G.V., Shakmanov V.V., Petrov V.I., Lukyanov A.E., Yakunin S. On the application of the gates with the deflection plates in a stroboscopic electron microscopy // Reports Russ. Acad. Sci. USSR. Phys. Ser. 1968. V. 32. № 7. P. 1111-1114.

34. Lukyanov A.E., Galstyan V., Spivak G.V. About stroboscopic scanning electron microscopy foursemiconductor structures // Russ. Technol. Electron. 1970. № 11. P. 2424-2427.

35. Taheri M.L., Browning N.D., Lewellen J. Symposium on Ultrafast Electron Microscopy and Ultrafast Science. Special Section: Ultrafast Electron Microscopy // Microsc. Microanal. 2009. V. 15. № 4. P. 271-271.

36. Knauer W. Boersch effect in electron-optical instruments // J. Vac. Sci. Technol. 1979. V. 16. № 6. P. 1676-1679.

37. Lobastov V.A., Srinivasan R., Zewail A.H. Fourdimensional ultrafast electron microscopy // Proc. Natl. Acad. Sci. U. S. A. 2005. V. 102. № 20. P. 7069-7073.

38. Zewail A.H. Ultrafast electron diffraction, crystallography, and microscopy // Annu. Rev. Phys. Chem. 2006. V. 57. № 1. P. 65-103.

39. Badali D.S., Gengler R.Y.N., Miller R.J.D. Ultrafast electron diffraction optimized for studying structural dynamics in thin films and monolayers // Structural Dynamics. 2016. V. 3. № 3. P. 34302.

40. Hu J., Vanacore G.M., Yang Z., Miao X., Zewail A.H. Transient Structures and Possible Limits of Data Recording in Phase-Change Materials // ACS Nano. 2015. V. 9. № 7. P. 6728-6737.

41. Miller R.J.D. Femtosecond Crystallography with Ultrabright Electrons and X-rays: Capturing Chemistry in Action // Science . 2014. V. 343. № 6175. P. 1108-1116.

42. Baskin J.S., Park H.S., Zewail A.H. Nanomusical Systems Visualized and Controlled in 4D Electron Microscopy // Nano Lett. 2011. V. 11. № 5. P. 2183-2191.

43. Electron Tomography / ed. J. Frank. New York: Springer, 2006. 456 p.

44. Kwon O.-H., Zewail A.H. 4D Electron Tomography // Science (80-. ). 2010. V. 328. № 5986. P. 1668-1673.

45. Barwick B., Zewail A.H. Photonics and Plasmonics in 4D Ultrafast Electron Microscopy // ACS Photonics. 2015. V. 2. № 10. P. 1391-1402.

46. Ryabov A., Baum P. Electron microscopy of electromagnetic waveforms. // Science. American Association for the Advancement of Science. 2016. V. 353. № 6297. P. 374-377.

47. Hada M., Norimatsu K., Tanaka S., Keskin S., Tsuruta T., Igarashi K. Bandgap modulation in photoexcited topological insulator Bi2Te3 via atomic displacements // J. Chem. Phys. 2016. V. 145. № 2. P. 24504.

48. Stapelfeldt H., Seideman T. Colloquium: Aligning molecules with strong laser pulses // Rev. Mod. Phys. American Physical Society. 2003. V. 75. № 2. P. 543-557.

49. Zon B.A., Katsnel’son B.G. Nonresonant scattering of intense light by a molecule // JETP. 1975. V. 42. № 4. P. 595-601.

50. Friedrich B., Herschbach D. Alignment and trapping of molecules in intense laser fields. // Phys. Rev. Lett. American Physical Society. 1995. V. 74. № 23. P. 4623-4626.

51. Villeneuve D.M. [et al.] Forced molecular rotation in an optical centrifuge. // Phys. Rev. Lett. American Physical Society. 2000. V. 85. № 3. P. 542-545.

52. Korobenko A., Milner A.A., Milner V. Direct Observation, Study, and Control of Molecular Superrotors // Phys. Rev. Lett. 2014. V. 112. № 11. P. 113004, 1-5.

53. Hensley C.J., Yang J., Centurion M. Imaging of Isolated Molecules with Ultrafast Electron Pulses // Phys. Rev. Lett. 2012. V. 109. № 13. P. 133202.

54. Yang J. [et al.] Imaging of alignment and structural changes of carbon disulfide molecules using ultrafast electron diffraction // Nat. Commun. 2015. V. 6. P. 8172.

55. Centurion M. Ultrafast imaging of isolated molecules with electron diffraction // J. Phys. B. At. Mol. Opt. Phys. 2016. V. 49. № 6. P. 62002.

56. Yurtsever A., van der Veen R.M., Zewail A.H. Subparticle ultrafast spectrum imaging in 4D electron microscopy // Science. American Association for the Advancement of Science. 2012. V. 335. № 6064. P. 59-64.

57. Liu H., Baskin J.S., Zewail A.H. Infrared PINEM developed by diffraction in 4D UEM. // Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113. № 8. P. 2041-2046.

58. Gaponov A.V., Miller M.A. Potential wells for charged particles in a high-frequency electromagnetic field // Sov. Phys. JETP. 1958. V. 7. P. 168-169.

59. Kibble T.W.B. Refraction of Electron Beams by Intense Electromagnetic Waves // Phys. Rev. Lett. American Physical Society. 1966. V. 16. № 23. P. 1054-1056.

60. Hebeisen C.T., Ernstorfer R., Harb M., Dartigalongue T., Jordan R.E., Miller. R.J.D. Femtosecond electron pulse characterization using laser ponderomotive scattering // Opt. Lett. 2006. V. 31. № 23. P. 3517-3520.

61. Hebeisen C.T., Sciaini G., Harb M., Ernstorfer R., Dartigalongue T., Kruglik S.G., Miller R.J.D. Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses // Opt. Express. 2008. V. 16. № 5. P. 3334-3341.

62. Andreev S.A., Greenfield D.E., Monastyrskiy M.A., Tarasov V.A. Spatial and temporal focusing of femtosecond electron bunches in time-dependent electric fields // Proceedings of the Seventh International Conference on Charged Particle Optics (CPO-7). 2008. V. 1. № 1. P. 273-283.

63. Gekker I.R. Interaction of strong electromagnetic fields with plasmas. Clarendon press, 1982. 324 p.

64. Fedorov M.V. Atomic and Free Electrons in a Strong Light Field. World Scie. Singapore New Jersey London Hong Kong: World Scienlifie Publishing Co. Pte. Lid., 1998. 468 p.

65. Bucksbaum P.H., Bashkansky M., McIlrath T.J. Scattering of Electrons by Intense Coherent Light // Phys. Rev. Lett. 1987. V. 58. № 4. P. 349-352.

66. Baum P., Zewail A.H. Attosecond electron pulses for 4D diffraction and microscopy // Proc. Natl. Acad. Sci. 2007. V. 104. № 47. P. 18409-18414.

67. Ischenko A.A., Bagratashvili V.N., Avilov A.S. Methods for studying the coherent 4D structural dynamics of free molecules and condensed state of matter: article // Crystallogr. Reports. 2011. V. 56. № 5. P. 751-773.

68. Ewbank J.D., Schäfer L., Ischenko A.A. Structural and vibrational kinetics of photoexcitation processes using time resolved electron diffraction // J. Mol. Struct. 2000. V. 524. № 1. P. 1-49.

69. Ischenko A.A. The study of coherent dynamics of the nuclei by time-resolved electron diffraction. III. Molecular quantum state tomography // Russ. Trans. Chem. Chem. Technol. 2009. V. 52. № 9. P. 62-66.

70. Ischenko A.A., Girichev G.V., Tarasov Y.I. Electron diffraction: structure and dynamics of free molecules and condensed matter. Moscow: FIZMATLIT, 2013. 616 p.

71. Ben-Nun M., Cao J., Wilson K.R. Ultrafast X-ray and Electron Diffraction: Theoretical Considerations // J. Phys. Chem. A. 1997. V. 101. № 47. P. 8743-8761.

72. Shao H.-C., Starace A.F. Detecting electron motion in atoms and molecules. // Phys. Rev. Lett. American Physical Society. 2010. V. 105. № 26. P. 263201-263204.

73. Shao H.-C., Starace A., Madsen L. Ultrafast electron pulse (e,2e) processes // Bull. Am. Phys. Soc. 43rd Annu. Meet. APS Div. At. Mol. Opt. Phys. 2012. V. 57. № 5. P. Abstract: N3.00008.

74. Williamson S., Mourou G., Li J.C.M. Timeresolved laser-induced phase transformation in aluminum: JOUR // Phys. Rev. Lett. American Physical Society. 1984. V. 52. № 26. P. 2364-2367.

75. Mourou G., Williamson S. Picosecond electron diffraction // Appl. Phys. Lett. 1982. V. 41. № 1. P. 44-45.

76. Ewbank J.D., Schäfer L., Paul D.W., Benston O.J., Lennox J.C. Real-time data acquisition for gas electron diffraction // Rev. Sci. Instrum. 1984. V. 55. № 10. P. 1598-1603.

77. Bostanjoglo O., Kornitzky J., Tornow R.P. Nanosecond double-frame electron microscopy of fast phase transitions // J. Phys. E. 1989. V. 22. № 12. P. 1008-1011.

78. Bostanjoglo O., Heinricht F. A laser pulsed high emission thermal electron gun // J. Phys. Conf. Ser. 1988. V. 93. № 1. P. 105-127.

79. Bostanjoglo O., Tornow R.P., Tornow W. Nanosecond-exposure electron microscopy of laserinduced phase transformations // Ultramicroscopy. North-Holland. 1987. V. 21. № 4. P. 367-372.

80. Dantus M., Kim S.B., Williamson J.C., Zewail A.H. Ultrafast Electron Diffraction. 5. Experimental Time Resolution and Applications // J. Phys. Chem. American Chemical Society. 1994. V. 98. № 11. P. 2782-2796.

81. Ewbank J.D., Luo J.Y., English J.T., Liu R.F., Faust W.L., Schafer L. Time-resolved gas electron diffraction study of the 193-nm photolysis of 1,2-dichloroethenes // J. Phys. Chem. American Chemical Society. 1993. V. 97. № 34. P. 8745-8751.

82. Cao J., Hao Z., Park H., Tao C., Kau D., L. Blaszczyk L. Femtosecond electron diffraction for direct measurement of ultrafast atomic motions // Appl. Phys. Lett. 2003. V. 83. № 5. P. 1044-1046.

83. Williamson J.C., Cao J., Ihee H., Frey H., Zewail A.H. Clocking transient chemical changes by ultrafast electron diffraction: JOUR // Nature. 1997. V. 386. № 6621. P. 159-162.

84. Dudek R.C., Weber P.M. Ultrafast Diffraction Imaging of the Electrocyclic Ring-Opening Reaction of 1,3-Cyclohexadiene // J. Phys. Chem. A. American Chemical Society. 2001. V. 105. № 17. P. 4167-4171.

85. Ruan C.-Y., Vigliotti F., Lobastov V.A., Chen S., Zewail A.H. Ultrafast electron crystallography: transient structures of molecules, surfaces, and phase transitions. // Proc. Natl. Acad. Sci. U.S.A. 2004. V. 101. № 5. P. 1123-1128.

86. Ischenko A.A., Golubkov V.V., Spiridonov V.P., Zgurskii A.V., Akhmanov A.S., Vabishevich M.G., Bagratashvili V.N. A stroboscopical gas-electron diffraction method for the investigation of short-lived molecular species // Appl. Phys. B Photophysics Laser Chem. 1983. V. 32. № 3. P. 161-163.

87. Becker R.S., Higashi G.S., Golovchenko J.A. Low-Energy Electron Diffraction during Pulsed Laser Annealing: A Time- Resolved Surface Structural Study // Phys. Rev. Lett. 1984. V. 52. № 4. P. 307-310.

88. Rood A.P., Milledge J. Combined flashphotolysis and gas-phase electron-diffraction studies of small molecules // J. Chem. Soc. Faraday Trans. 2. 1984. V. 80. № 9. P. 1145-1153.

89. Elsayed-Ali H.E., Mourou G.A. Picosecond reflection high-energy electron diffraction // Appl. Phys. Lett. 1988. V. 52. № 2. P. 103.

90. Bartell L.S., Dibble T.S. Observation of the time evolution of phase changes in clusters // J. Am. Chem. Soc. 1990. V. 112. № 2. P. 890-891.

91. Herman J.W., Elsayed-Ali H.E., Murphy E.A. Time-resolved structural study of Pb(100) // Phys. Rev. Lett. 1993. V. 71. № 3. P. 400-403.

92. Siwick B.J., Dwyer J.R., Jordan R.E., Miller R.J.D. An atomic-level view of melting using femtosecond electron diffraction // Science. American Association for the Advancement of Science. 2003. V. 302. № 5649. P. 1382-1385.

93. Ihee H., Lobastov V.A., Gomez U.M., Goodson B.M., Srinivasan R., Ruan C.-Y., Zewail A.H. Direct imaging of transient molecular structures with ultrafast diffraction. // Science. American Association for the Advancement of Science. 2001. V. 291. № 5503. P. 458-462.

94. Dömer H., Bostanjoglo O. High-speed transmission electron microscope // Rev. Sci. Instrum. 2003. V. 74. № 10. P. 4369-4372.


Для цитирования:


Ищенко А.А., Тарасов Ю.И., Рябов Е.А., Асеев С.А., Шефер Л. СВЕРХБЫСТРАЯ ПРОСВЕЧИВАЮЩАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ. Тонкие химические технологии. 2017;12(1):5-25. https://doi.org/10.32362/2410-6593-2017-12-1-5-25

For citation:


Ischenko A.A., Tarasov Y.I., Ryabov E.A., Aseyev S.A., Schäfer L. ULTRAFAST TRANSMISSION ELECTRON MICROSCOPY. Fine Chemical Technologies. 2017;12(1):5-25. https://doi.org/10.32362/2410-6593-2017-12-1-5-25

Просмотров: 97


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)