Preview

Fine Chemical Technologies

Advanced search

Non-empirical calculations of minimal energetic ways of addition of H2F2 and H2Cl2 molecules to acetylene and methylacetylene molecules

Full Text:

Abstract

Surfaces of potential energy of gas phase addition reactions of H2F2 and H2Cl2 molecules to acetylene and methyl acetylene molecules were examined. An ab initio calculation of H2F2 and H2Cl2 molecules was carried out. A non-empirical Hartree-Fock-Roothaan method, 6-31 ++G** basis, taking into account electronic correlation in MP2 approximation (Møller-Plesset 2nd order) and Gaussian–03 software were used. Reaction heats and activation energies were calculated. It was established that addition of H2F2 and H2Cl2 molecules to a methyl acetylene molecule according to Markovnikov’s rule with the formation of 2-fluoropropene and HF and 2-chloropropene and HCl respectively is more advantageous both kinetically and thermodynamically.

About the Authors

Yu. B. Kirillov
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


N. M. Klimenko
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


O. N. Temkin
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


References

1. Сергеев Г.Б., Левенсон Н.А., Тюрина Л.А. Инверсия селективности и механизм гидро-бромирования олефинов в неполярных средах // Докл. Академии наук. 1978. Т. 240. № 6. С. 1390–1393.

2. Weiss H.M., Tonchette K.M., Angell S., Khan J. The concerted addition of HBr to aryl alkynes; orthogonal pi bond selectivity // Org. Biomol. Chem. 2003. № 1 (12). Р. 2152–2156.

3. Itо S., Kakehi A. Orbital tilting and hybridization change. An illustrational molecular orbital approach to an addition (CH2=CH2 + HBr CH2CH2Br) and an elimination reaction (CH3CH2Br/ Base CH2=CH2) // Bull. Chem. Soc. Jpn. 1990. V. 63. № 10. Р. 2850–2856.

4. Siegbahn Per E.M., Strömberg S., Zetterberg K. Intrinsic aptitude of cationic methyl- and ethylpalladium to associate ethylene and to further undergo subsequent migratory insertion. A theoretical study // Organometalliсs. 1996. V. 15. Р. 5542–5550.

5. Senn H.M., Blochl P.E., Togni A. Toward an alkene hydroamination catalyst: Static and dynamic ab initio DFT studies // J. Am. Chem. Soc. 2000. V. 122. Р. 4098–4107.

6. Beller M., Seayad J., Tillack A., Jiao H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: Recent developments and trends // Angew. Chem. Int. Ed. 2004. V. 43. Р. 3368–3398.

7. Ilich P.-P., Rickertsen L.S., Becker E. Polar addition to C=C group: Why is anti-Markovnikov hydroboration – oxidation of alkenes not “anti –“ ? // J. Chem. Education. 2006. V. 83. № 11. Р. 1681–1685.

8. Tsipis C.A., Kefalids C.E. How efficient are the hydrido-bridged diplatinum catalyst in the hydrosilylation, hydrocyanation, and hydroamination of alkines: A theoretical analysis of the catalytic cycles employing electronic structure calculation methods // Organometallics. 2006. V. 25. Р. 1696–1706.

9. Hintermann L., Labone A. Catalytic hydration of alkynes and its application in synthesis // Synthesis. 2007. № 8. Р. 1121–1150.

10. Yang Z.-Z., Ding V.-Li, Zhag D.-X. Insight into Markovnikov reactions of alkenes in terms of ab intio and molecular face theory // Chem. Phys. Chem. 2008. № 9. Р. 2379–2389.

11. Темкин О.Н., Шестаков Г.К., Трегер Ю.А. Ацетилен: химия, механизмы реакций, технология. – М.: Химия, 1991. 415 с.

12. Alonso F., Beletskaya I.P., Yus M. Transition metal-catalyzed addition of heteroatom–hydrogen bonds to alkynes // Chem. Rev. 2004. V. 104. Р. 3079–3160.

13. Mǔller T.E., Hultzsh K.C., Yus M., Fonbelo F., Tada M. Hydroamination – direct addition of amines to alkenes and alkynes // Chem. Rev. 2008. V. 108. Р. 3795–3892.

14. Якобсон В.В., Гескин В.М., Клименко Н.М., Боженко К.В., Темкин О.Н. Неэмпирические расчеты поверхностей потенциальной энергии реакций нуклеофильного присоединения иона Н– к метилацетилену // Теор. и эксперим. химия. 1985. Т. 21. № 3. С. 303–309.

15. Якобсон В.В., Клименко Н.М., Боженко К.В., Темкин О.Н Неэмпирические расчеты поверхностей потенциальной энергии реакций нуклеофильного присоединения Н– и F– к молекуле ацетилена // Теор. и эксперим. химия. 1989. Т. 25. № 2. С. 149–159.

16. Клименко Н.М., Боженко К.В., Якобсон В.В., Темкин О.Н Неэмпирические расчеты поверхностей потенциальной энергии реакций нуклеофильного присоединения Н– и F– к молекуле ацетилена и метилацетилена // Теор. и эксперим. химия. 1992. Т. 28. № 1. С. 5–12.

17. Zhao C.D., Chen B., Huang J.-A. Reaction ergodagraphy for the additions of HLi and its dimers to acetylene // Int. J. Quant. Chem. 1989. V. 36. № 1. Р. 5– 9.

18. Nork K.N., Schleyer R., Kaufmann E., Clark T. Transition structures for addition LiH and MeLi to ethylene and acetylene // J. Am. Chem. Soc. 1985. V. 107. Р. 2821–2823.

19. Apeloig Y., Clark T., Kos A.J., Jemmis E., Schleye P.v.R. Geometrics, energies of dichloroethylene isomers and vinyl lithium. An ab initio study // Israel J. Chem. 1980. V. 20. Р. 43–50.

20. Klimenko N.M., Bozhenko K.V., Strunina E.V., Rykova E.A., Temkin O.N. Ab initio calculations of minimal energy pathways for nucleophilic addition reactions of H– anion, LiH molecule and Li+/H– ionic pair to acetylene and methylacetylene // Abstracts of WATOC’93. – Toyohashi, Japan, 1993. P. 217.

21. Кириллов Ю.Б., Клименко Н.М. Неэмпирические расчеты минимальных энергетических путей реакций присоединения молекулы HF к молекулам ацетилена и метилацетилена // Вестник МИТХТ. 2009. Т. 4. № 1. С. 42–46.

22. Немухин А.В. Димер фторида водорода. Строение простейшего комплекса с водородной связью // Соросовский образовательный журнал. 1998. № 7. С. 65–69.

23. Реутов О.А., Курц А.Л., Бутин К.П. Органическая химия: учебник для вузов. – М.: Изд-во МГУ, 2005. 491 с.


For citation:


Kirillov Yu.B., Klimenko N.M., Temkin O.N. Non-empirical calculations of minimal energetic ways of addition of H2F2 and H2Cl2 molecules to acetylene and methylacetylene molecules. Fine Chemical Technologies. 2012;7(6):32-40. (In Russ.)

Views: 81


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)