Preview

Fine Chemical Technologies

Advanced search

THE PROGNOSTIC MODEL OF ANTITUMOR EFFECT OF TARGETED DRUGS IN IMMUNOTHERAPY

https://doi.org/10.32362/2410-6593-2016-11-4-69-74

Full Text:

Abstract

A prognostic model for constructing hypotheses about the relationship of combinations of cytokines with the proliferative activity of cancer cells is proposed. The model is based on the use of inductive inference methods. The methodology takes into account the synergistic interaction of cytokines and uses sequential construction of logical formulas for selecting groups of cytokines, a statistical analysis of contingency tables and logical integration of the obtained estimates. Implementation of the proposed method in the information system of forecasting the effect of targeted anticancer drugs in immunotherapy will greatly accelerate research in this area.

About the Authors

V. V. Burlyaev
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation


А. А. Davydenko
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation


O. M. Nikolaeva
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation


L. I. Russu
Gamaleya Federal Research Center of Epidemiology and Microbiology of the Ministry of Health of the Russian Federation
Russian Federation


I. A. Suetina
Gamaleya Federal Research Center of Epidemiology and Microbiology of the Ministry of Health of the Russian Federation
Russian Federation


M. V. Mezentseva
Gamaleya Federal Research Center of Epidemiology and Microbiology of the Ministry of Health of the Russian Federation
Russian Federation


References

1. Kozlov V.A., Chernyh E.R. // Bulletin SB RAMS. 2004. V. 2. P. 113–121. (in Russ.)

2. Bryuzgin V.V., Platinsky L.V. // Modern Oncology. 2014. V.16. № 11. P. 2–7. (in Russ.)

3. Simbirtsev A.S. // Medical Academic Journal. 2013. V. 13. № 1. P. 7–22. (in Russ.)

4. Lopatina O.A., Mezentseva M.V., Baklanova O.V., Podchernyaeva R.J., Egorov V.V. // Questions of biological, medical and pharmaceutical chemistry. 2014. № 7. P. 22–28. (in Russ.)

5. Ershov F.I., Mezentseva M.V., Vasiliev A.N., Shcherbenko V.E., Narovlyansky A.N. // Bulletin of Scientific Center of Expertise and State Control of Medicines. 2002. № 1 (9). P. 26–29. (in Russ.)

6. Teletaeva G.M. // Practical Oncology. 2007. V. 8 № 4. P. 211–218. (in Russ.)

7. Vagin V.N., Golovina E.Yu., Zagoryanskaya A.A., Fomina M.V. Reliable and credible conclusion in intelligent systems. M.: FIZMATLIT, 2008. 712 p. (in Russ.)

8. Golenkov V.V., Stepanova M.D., Samodumkin S.A., Gulyakina N.A. Statistical bases of inductive inference. Minsk: BSUIR, 2009. 202 p. (in Russ.)

9. Upton G. Analysis of contingency tables. M.: Finance and Statistics, 1982. 143 p. (in Russ.)

10. Burlyaev V.V., Davydenko A.A., Suetin I.A., Mezentseva M.V. // Integral. 2015. №1-2. Р. 26–27. (in Russ.)

11. Geltser B.I., Markelova E.V., Prosekova E.V., Kochetkova E.A. // Therapeutic Archives. 2002. V. 74. № 11. Р. 94–99. (in Russ.)

12. Berezhnaya N.M. // Allergology and Immunology. 2004. V. 5. № 3. P. 368–369. (in Russ.)

13. Lapach S.N., Chubenko A.V., Babich P.N. Statistical methods in biomedical research using Excel. Kиев: MORION, 2000. 320 p. (in Russ.)

14. Vorontsov K.V. Combinatorial approach to assessing the quality of training algorithm / Ed. K.V. Vorontsov // Mathematical problems of cybernetics. M.: FIZMATLIT, 2004. V. 13. Р. 5–36. (in Russ.)


For citation:


Burlyaev V.V., Davydenko А.А., Nikolaeva O.M., Russu L.I., Suetina I.A., Mezentseva M.V. THE PROGNOSTIC MODEL OF ANTITUMOR EFFECT OF TARGETED DRUGS IN IMMUNOTHERAPY. Fine Chemical Technologies. 2016;11(4):69-74. https://doi.org/10.32362/2410-6593-2016-11-4-69-74

Views: 106


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)