Preview

Fine Chemical Technologies

Advanced search

Influence of the structure of phosphorus(III)-containing oligoester(meth)acrylates on the physical and mechanical properties, thermal stability, and combustion mechanisms of cured polymers

https://doi.org/10.32362/2410-6593-2025-20-6-594-611

EDN: XIVTBW

Abstract

Objectives. The work sets out to investigate the influence of the structure of spacer in structure of phosphorus(III)-containing oligoester(meth)acrylates on physical and mechanical properties of polymers and their combustibility.

Methods. The physical and mechanical properties of polymers were determined using the following: DMA 242 E Artemis dynamic mechanical analyzer (NETZSCH, Germany); universal testing machine for standard tests on materials (ZwickRoell Group, Germany); GT-7045-HMH(L) impact test machine (Gotech Testing Machines, Inc., Taiwan); Q-1500 D derivatograph of the Paulic–Paulic– Erdey system (thermogravimetry, IOM, Hungary); Oxygen Index Module device for determination of burning behavior by plastic flammability testing according to oxygen index (Concept Equipment, United Kingdom); GT-7045-HMH(L) device for determination of the Vicat softening temperature (Gotech Testing Machines, Inc., Taiwan); SFT-110XW supercritical fluid extractor (Supercritical Fluid Technologies, Inc., USA) for supercritical fluid extraction with carbon dioxide.

Results. The influence of the spacer structure in the structure of phosphorus(III)-containing oligoester(meth)acrylates on the dynamic mechanical and physicomechanical properties of polymers was established. Comparative assessment of the impact of the spacer structure on properties of polymers was carried out in terms of their heat stability (thermogravimetric analysis) and combustibility (measurement of limited oxygen index). It is established that polymers having balanced physical and mechanical properties can be obtained by introducing spacer characteristics into the oligomer structure. Polymers obtained on the basis of phosphorus(III)-containing oligoester(meth)acrylates with spacers demonstrate considerable resistance to impact strength tests.

Conclusions. The achieved results testify to the possibility of obtaining polymers on the basis of phosphorus(III)-containing oligoester(meth)acrylates with spacer attributes that possess increased resistance to impact strength and thermal stability tests at an insignificant decrease in their combustibility.

About the Authors

B. A. Buravov
Volgograd State Technical University
Russian Federation

Boris A. Buravov, Cand. Sci. (Chem.), Associate Professor, Department of General and Inorganic Chemistry; Senior Researcher, Laboratory of Polymer, Composite and Hybrid Functional Materials

Scopus Author ID 57972246000, ResearcherID AAH-5810-2021

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest.



A. Al-Hamzawi
Al-Qadisiyah University
Iraq

Ali Al-Hamzawi, Lecturer, Department of Chemical Technology, Technical Faculty

Scopus Author ID 52902445200, ResearсherID M-2885-2017

Al-Qadisiyah, Al-Diwaniyah, 58002


Competing Interests:

The authors declare no conflicts of interest.



R. B. Gadzhiev
Volgograd State Technical University
Russian Federation

Rashid B. Gadzhiev, Senior lecturer, Department of General and Inorganic Chemistry

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest.



S. A. Orlova
Volgograd State Technical University
Russian Federation

Svetlana A. Orlova, Cand. Sci. (Eng.), Associate Professor, Department of General and Inorganic Chemistry

ResearcherID MCY-1139-2025

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest.



L. Yu. Donetskova
Volgograd State Technical University
Russian Federation

Lyubov Yu. Donetskova, Postgraduate Student, Assistant, Department of General and Inorganic Chemistry

Scopus Author ID 58849621700, ResearcherID KII-1406-2024

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest.



S. M. Solomakhin
Volgograd State Technical University
Russian Federation

Semyon M. Solomakhin, Postgraduate Student, Engineer, Department of General and Inorganic Chemistry

Scopus Author ID 59412397400, ResearcherID AFG-4109-2022

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest.



S. V. Borisov
Volgograd State Technical University
Russian Federation

Sergey V. Borisov, Cand. Sci. (Eng.), Associate Professor, Department of Chemistry and Processing Technology of Elastomers; Senior Researcher, Laboratory of Polymer, Composite and Hybrid Functional Materials

Scopus Author ID 57193435253, ResearcherID AAF-1221-2021

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest.



O. S. Fomenko
Volgograd State Technical University
Russian Federation

Olga S. Fomenko, Cand. Sci. (Philol.), Associate Professor, Department of Foreign Languages

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest.



S. А. Trubachev
Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Stanislav A. Trubachev, Cand. Sci. (Phys.-Math.), Assistant Professor, Department of General Physics, Faculty of Physics, Novosibirsk State University; Senior Researcher, Laboratory of Kinetics and Combustion

Scopus Author ID 57198490232, ResearcherID T-3224-2019

3, Institutskaya ul., Novosibirsk, 630090


Competing Interests:

The authors declare no conflicts of interest.



A. A. Paletsky
Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Aleksander A. Paletsky, Dr. Sci. (Phys.-Math.), Senior Researcher, Laboratory of Kinetics and Combustion

Scopus Author ID 6602774865, ResearcherID B-1171-2014

3, Institutskaya ul., Novosibirsk, 630090


Competing Interests:

The authors declare no conflicts of interest.



A. G. Shmakov
Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Andrey G. Shmakov, Dr. Sci. (Chem.), Assistant Professor, Department of Chemical and Biological Physics, Faculty of Physics, Novosibirsk State University;  Head of the Laboratory of Kinetics and Combustion

Scopus Author ID 7006640724, ResearcherID A-9996-2014

3, Institutskaya ul., Novosibirsk, 630090


Competing Interests:

The authors declare no conflicts of interest.



O. Tuzhikov
Volgograd State Technical University
Russian Federation

Oleg I. Tuzhikov, Dr. Sci. (Chem.), Professor, Department of Technology of Macromolecular and Fibrous Materials

Scopus Author ID 6507272270

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest.



O. O. Tuzhikov
Volgograd State Technical University
Russian Federation

Oleg O. Tuzhikov, Dr. Sci. (Eng.), Associate Professor, Head of the Department of General and Inorganic Chemistry

Scopus Author ID 12645529200

28, pr. im. V.I. Lenina, Volgograd, 400005


Competing Interests:

The authors declare no conflicts of interest.



References

1. Tuzhikov O.I., Khokhlova T.V., Bondarenko S.N., Zotov S.B., Tuzhikov O.O., Rakhmangulova N.I. Ehlastomery i plastiki s ponizhennoi goryuchest’yu (Elastomers and Plastics with Reduced Flammability). Volgograd: Politekhnik; 2005, 214 p. (In Russ.).

2. Tuzhikov O.I., Khokhlova T.V., Bondarenko S.N., et al. Modification of epoxy-4,4′-isopropylidenediphenol resins with phosphorylated methacrylates for preparing compounds of the interpenetrating polymer network type. Russ. J. Appl. Chem. 2009;82(11):2034–2040. https://doi.org/10.1134/S107042720911024X [Original Russian Text: Tuzhikov O.I., Khokhlova T.V., Bondarenko S.N., Dkhaibe M., Orlova S.A. Modification of epoxy-4,4′-isopropylidenediphenol resins with phosphorylated methacrylates for preparing compounds of the interpenetrating polymer network type. Zhurnal prikladnoi khimii. 2009;82(11):1887–1893 (in Russ.). https://www.elibrary.ru/tagrwk ]

3. Bakhtina G.D., Kochnov A.B., Novakov I.A. Composition effect of copolymers unsaturated oligomers with phosphorus- and chlorine-containing methacrylate on their properties. Izvestiya VolGGTU = Izvestia VSTU. 2016;4(183):84–87 (in Russ.). https://www.elibrary.ru/vxlfez

4. Bakhtina G.D., Kochnov A.B., Borisov S.V., Novakov I.A. Properties of methyl methacrylate copolymers with phosphorus-chlorine and silicon-containing methacrylates. Plasticheskie Massy. 2018;(9-10):3–6 (in Russ.). https://doi.org/10.35164/0554-2901-2018-9-10-3-6

5. Buravov B.A., Al-Khamzawi A., Bochkarev E.S., Grichishkina N.Kh., Borisov S.V., Sidorenko N.V., Tuzhikov O.I., Tuzhikov O.O. Synthesis of new photo-cured phosphorus-containing oligoestermethacrylates with a spacer in the structure. Fine Chem. Technol. 2022;17(5):410–426. https://doi.org/10.32362/2410-6593-2022-17-5-410-426

6. Tuzhikov O.I., Tuzhikov O.O., Buravov B.A., Bochkaryov E.S., Khokhlova T.V., Sidorenko N.V. Use of oligoether acrylate of ((((1-(4-(2-(4-(3-(4-(2-(4-(2-((((1-(аллилокси)-3-halogenopropan- 2-yl)oxy)((1-halogen-3-(methylacryloyioxy)propan-2-yl)- oxy)phosphin)oxy)-3-halogenpropoxy)phenyl)propan- 2-yl)phenoxy)-2-hydroxypropoxy)phenyl)propan-2-yl)- phenoxy)-3-halogenopropan-2-yl)oxy)phosphin diiyl)bis(oxy))bis(3-halogenopropane-2,1-diiyl)bis(2-methylacrylate) as a monomer for producing thermo- and heat-resistant polymers with low inflammability: RF Pat. 2712119. Publ. 24.01.2020.

7. Venkategowda T., Manjunatha L.H., Anilkumar P.R. Dynamic mechanical behavior of natural fibers reinforced polymer matrix composites–A review. Materials Today: Proceedings. 2022; 54(Part 2):395–401. https://doi.org/10.1016/j.matpr.2021.09.465

8. Dias E., Chalse H., Mutha S., et al. Review on synthetic/natural fibers polymer composite filled with nanoclay and their mechanical performance. Materials Today: Proceedings. 2023;77(Part 3):916–925. https://doi.org/10.1016/j.matpr.2022.12.059

9. Boyd R.H., Smith G.D. Polymer Dynamics and Relaxation. Cambridge University Press; 2010, 266 p. ISBN 978-0521152914

10. Askadskii A.A., Matveev Yu.I. Khimicheskoe stroenie i fizicheskie svoistva polimerov (Chemical Structure and Physical Properties of Polymers). Moscow: Khimiya; 1983, 248 p. (in Russ.).

11. Jeyaraman J., Jesuretnam B.R., Ramar K. Effect of stacking sequence on dynamic mechanical properties of Indian almond – Kenaf fiber reinforced hybrid composites. J. Nat. Fibers. 2022;19(12):4381–4392. https://doi.org/10.1080/15440478.2020.1858219

12. Huang J., Zhou J., Liu M. Interphase in polymer nanocomposites. JACS Au. 2022;2(2):280–291. https://doi.org/10.1021/jacsau.1c00430

13. Van Krevelen D.W., te Nijenhuis K. Properties of Polymers: Their Correlation with Chemical Structure: their Numerical Estimation and Prediction from Additive Group Contributions: 4th edition. Elsevier; 2009, 1764 p.

14. Shao Z.-B., Zhang M.-X., Li Y., et al. A novel multi-functional polymeric curing agent: Synthesis, characterization, and its epoxy resin with simultaneous excellent flame retardance and transparency. Chem. Eng. J. 2018;345:471–482. https://doi.org/10.1016/j.cej.2018.03.142

15. Luo Q., Sun Y., Biao Y., et al. Synthesis of a novel DPPA-containing benzoxazine to flame-retard epoxy resin with maintained thermal properties. Polymer. Adv. Technol. 2019;30(8):1989–1995. https://doi.org/10.1002/pat.4631

16. Ben Abdallah A., Kallel A., Hassine T., et al. Modeling of viscoelastic behavior of a shape memory polymer blend. J. Appl. Polymer Sci. 2022;139(13):51859. https://doi.org/10.1002/app.51859

17. Singh J.K., Rout A.K. Thermal stability and dynamic mechanical analysis of nano-biofillers blended hybrid composites reinforced by cellulosic Borassus flabellifer L. fiber. Int. J. Polymer Anal. Character. 2023;28(6):552–563. https://doi.org/10.1080/1023666X.2023.2251792

18. Jayakumar A., Jacob J., Parameswaranpillai J., Hameed N., Krishnasamy S. Polymer Crystallization: Methods, Characterization, and Applications. Wiley; 2023, 384 p. ISBN 978-3527350810

19. Moad G., Solomon D.H. The Chemistry of Radical Polymerization. Elsevier; 2005, 666 p. ISBN 978-0080442860

20. Coats A.W., Redfern J.P. Kinetic Parameters from Thermogravimetric Data. Nature. 1964;201:68–69. https://doi.org/10.1038/201068a0

21. Korobeinichev O.P., Paletsky A.A., Gonchikzhapov M.B., Glaznev R.K., Gerasimov I.E., Naganovsky Y.K., et al. Kinetics of thermal decomposition of PMMA at different heating rates and in a wide temperature range. Thermochim. Acta. 2019;671:17–25. https://doi.org/10.1016/j.tca.2018.10.019


Review

For citations:


Buravov B.A., Al-Hamzawi A., Gadzhiev R.B., Orlova S.A., Donetskova L.Yu., Solomakhin S.M., Borisov S.V., Fomenko O.S., Trubachev S.А., Paletsky A.A., Shmakov A.G., Tuzhikov O., Tuzhikov O.O. Influence of the structure of phosphorus(III)-containing oligoester(meth)acrylates on the physical and mechanical properties, thermal stability, and combustion mechanisms of cured polymers. Fine Chemical Technologies. 2025;20(6):594-611. https://doi.org/10.32362/2410-6593-2025-20-6-594-611. EDN: XIVTBW

Views: 29

JATS XML

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)