Comparative analysis of three genetic constructs for delivery and expression of a modified single-domain antibody gene in rAAV
https://doi.org/10.32362/2410-6593-2025-20-6-582-593
EDN: VKKHOP
Abstract
Objectives. To obtain and compare the efficiency of three recombinant adeno-associated virus (rAAV) variants expressing the gene of the modified single-domain antibody B11-Fc specific to botulinum toxin type A (BoNT/A): rAAV-DJ-CMV-B11-Fc, rAAV-DJ-CASI-B11-Fc, and scAAV-DJ-CMV-B11-Fc.
Methods. The AAV-DJ Packaging System (Cell Biolabs, USA) was used to create target constructs and obtain rAAV. Expression of the B11-Fc antibody gene in the obtained rAAV was assessed in vitro (HEK293, CHO-S, and C2C12 cell lines) and in vivo (BALB/c mice) using biolayer interferometry. The protective properties of the drugs were investigated on the model of lethal intoxication of mice with
BoNT/A.
Results. The rAAV-DJ-CMV-B11-Fc drug demonstrated a high level of B11-Fc antibody production both in vitro and in vivo without a significant decrease in concentration for at least 6 months. Comparable levels of B11-Fc production were demonstrated by rAAV-DJ-CASI-B11-Fc and scAAV-DJ-CMV-B11-Fc drugs in both in vitro and in vivo studies, with the exception of C2C12 cells, where rAAV-DJ-CASI-B11-Fc demonstrated the highest efficacy. When investigating the protective activity of the drugs against a lethal dose of BoNT/A, it was found that rAAV-DJ-CASI-B11-Fc possessed more pronounced activity in the first two days following administration as compared to rAAV-DJ-CMV-B11-Fc. However, at later stages, starting from 3 months, the rAAV-DJ-CMV-B11-Fc drug product demonstrated the most pronounced protection against high doses of BoNT/A.
Conclusions. The obtained data show that rAAV-DJ-CASI-B11-Fc should be used for the induction of protection against BoNT/A at early stages (24–48 h) after administration, whereas for protection against the highest doses of BoNT/A in the long term, rAAV-DJ-CMV-B11-Fc should be used. Studies into the specific activity of the drugs at later stages after administration are still ongoing.
About the Authors
E. I. RyabovaRussian Federation
Ekaterina I. Ryabova, Junior Researcher, Laboratory of Immunobiotechnology
Scopus Author ID 57301278100, ResearcherID AAE-7335-2022
18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest
A. A. Derkaev
Russian Federation
Artem A. Derkaev, Junior Researcher, Laboratory of Immunobiotechnology
Scopus Author ID 57381507000, ResearcherID AFU-7075-2022
18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest.
I. B. Esmagambetov
Russian Federation
Ilias B. Esmagambetov, Cand. Sci. (Biol.), Leading Researcher, Head of the Laboratory of Stromal Regulation of Immunity
Scopus Author ID 56120429700, ResearcherID E-3327-2014
18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest.
M. A. Dovgiy
Russian Federation
Mikhail A. Dovgiy, Junior Researcher, Laboratory of Immunobiotechnology
ResearcherID AFV-2114-2022
18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest.
A. A. Blinov
Russian Federation
Anton A. Blinov, Laboratory Research Assistant, Laboratory of Stromal Regulation of Immunity
ResearcherID OCL-6033-2025
18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest.
R. M. Hossain
Russian Federation
Roza M. Hossain, Junior Researcher, Laboratory of Stromal Regulation of Immunity
ResearcherID OCL-6134-2025
18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest.
O. E. Dmitriev
Russian Federation
Oleg E. Dmitriev, Leading Engineer, Laboratory of Stromal Regulation of Immunity
ResearcherID ODJ-2714-2025
18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest.
D. S. Polyansky
Russian Federation
Dmitry S. Polyansky, Assistant Professor, I.P. Alimarin Department of Analytical Chemistry
Scopus Author ID 57890564200
78, Vernadskogo pr., Moscow, 119545
Competing Interests:
The authors declare no conflicts of interest.
A. N. Noskov
Russian Federation
Anatoly N. Noskov, Dr. Sci. (Biol.), Leading Researcher, Laboratory of Immunobiotechnology
Scopus Author ID 7005685081
18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest.
D. V. Shcheblyakov
Russian Federation
Dmitry V. Shcheblyakov, Dr. Sci. (Biol.), Leading Researcher, Head of the Department of Genetics and Molecular Biology of Bacteria, Head of the Laboratory of Immunobiotechnology
Scopus Author ID 35073056900, ResearcherID E-5899-2014
18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest.
D. Y. Logunov
Russian Federation
Denis Y. Logunov, Academician at the Russian Academy of Sciences, Dr. Sci. (Biol.), Deputy Director for Research
Scopus Author ID 22835557900, ResearcherID E-8300-2014
18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest.
A. L. Gintsburg
Russian Federation
Alexander L. Gintsburg, Academician at the Russian Academy of Sciences, Academician at the Russian Academy of Medical Sciences, Dr. Sci. (Biol.), Professor, Director
Scopus Author ID 7005111491
18, Gamaleya ul., Moscow, 123098
Competing Interests:
The authors declare no conflicts of interest.
References
1. Laursen N.S., Friesen R.H., Zhu X., Jongeneelen M., Blokland S., Vermond J., Van Eijgen A., Tang C., Van Diepen H., Obmolova G., van der Neut Kolfschoten M., et al. Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science. 2018;362(6414):598–602. https://doi.org/10.1126/science.aaq0620
2. Esmagambetov I.B., Ryabova E.I., Derkaev A.A., Shcheblyakov D.V., Dolzhikova I.V., Favorskaya I.A., et al. rAAV expressing recombinant antibody for emergency prevention and long-term prophylaxis of COVID-19. Front. Immunol. 2023;14:1129245. https://doi.org/10.3389/fimmu.2023.1129245
3. Derkaev A.A., Ryabova E.I., Esmagambetov I.B., Shcheblyakov D.V., Godakova S.A., Vinogradova I.D., Noskov A.N., Logunov D.Y., Naroditsky B.S., Gintsburg A.L. rAAV expressing recombinant neutralizing antibody for the botulinum neurotoxin type a prophylaxis. Front. Microbiol. 2022;13:960937. https://doi.org/10.3389/fmicb.2022.960937
4. Godakova S.A., Noskov A.N., Vinogradova I.D., Ugriumova G.A., Solovyev A.I., Esmagambetov I.B., et al. Camelid VHHs fused to human fc fragments provide long term protection against botulinum neurotoxin a in mice. Toxins. 2019;11(8):464. https://doi.org/10.3390/toxins11080464
5. Ryabova E.I., Derkaev A.A., Esmagambetov I.B., Shcheblyakov D.V., Dovgiy M.A., Byrikhina D.V., Prokofiev V.V., Chemodanova I.P. Comparison of different technologies for producing recombinant adeno-associated virus on a laboratory scale. BIOpreparaty. Profilaktika, diagnostika, lechenie = BIOpreparations. Prevention, Diagnosis, Treatment. 2021;21(4):266–278 (in Russ.). https://doi.org/10.30895/2221-996X-2021-21-4-266-278
6. Derkaev A.A., Ryabova E.I., Esmagambetov I.B., Shcheblyakov D.V., Noskov A.N., Vinogradova I.D., Prokofiev V.V., Polyansky D.S., Logunov D.Y., Gintsburg A.L. A modified single-domain antibody candidate for the treatment of botulism caused by botulinum toxin type A. BIOpreparaty. Profilaktika, diagnostika, lechenie = BIOpreparations. Prevention, Diagnosis, Treatment. 2025;25(1): 58–70 (in Russ.). https://doi.org/10.30895/2221-996X-2025-591
7. Cabrera A., Edelstein H.I., Glykofrydis F., Love K.S., Palacios S., Tycko J., Zhang M., Lensch S., Shields C.E., Livingston M., Weiss R., et al. The sound of silence: Transgene silencing in mammalian cell engineering. Cell Syst. 2022;13(12):950–973. https://doi.org/10.1016/j.cels.2022.11.005
8. Xu L., Daly T., Gao C., Flotte T.R., Song S., Byrne B.J., Sands M.S.., Ponder K.P. CMV-β-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1α promoter and results in therapeutic levels of human factor X in mice. Human Gene Ther. 2001;12(5):563–573. https://doi.org/10.1089/104303401300042500
9. Wang L., Bell P., Somanathan S., Wang Q., He Z., Yu H., McMenamin D., Goode T., Calcedo R., Wilson J.M. Comparative study of liver gene transfer with AAV vectors based on natural and engineered AAV capsids. Mol. Ther. 2015;23(12):1877–1887. https://doi.org/10.1038/mt.2015.179
10. Choi V.W., McCarty D.M., Samulski R.J. AAV hybrid serotypes: Improved vectors for gene delivery. Curr. Gene Ther. 2005;5(3):299–310. https://doi.org/10.2174/1566523054064968
11. Wang D., Tai P.W., Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Rev. Drug Discov. 2019;18(5):358–378. https://doi.org/10.1038/s41573-019-0012-9
12. Brydon E.M., Bronstein R., Buskin A., Lako M., Pierce E.A., Fernandez-Godino R. AAV-mediated gene augmentation therapy restores critical functions in mutant PRPF31+/− iPSC-derived RPE cells. Mol. Ther. Methods Clin. Develop. 2019;15:392–402. https://doi.org/10.1016/j.omtm.2019.10.014
13. Xing M., Wang X., Chi Y., Zhou D. Gene therapy for colorectal cancer using adenovirus-mediated full-length antibody, cetuximab. Oncotarget. 2016;7(19):28262. https://doi.org/10.18632/oncotarget.8596
14. Hollidge B.S., Carroll H.B., Qian R., Fuller M.L., Giles A.R., Mercer A.C., Danos O., Liu Y., Bruder J.T., Smith J.B. Kinetics and durability of transgene expression after intrastriatal injection of AAV9 vectors. Front. Neurol. 2022;13:1051559 https://doi.org/10.3389/fneur.2022.1051559
15. McCarty D.M. Self-complementary AAV vectors; advances and applications. Mol. Ther. 2008;16(10):1648–1656. https://doi.org/10.1038/mt.2008.171
16. Yokoi K., Kachi S., Zhang H.S., Gregory P.D., Spratt S.K., Samulski R.J., Campochiaro P.A. Ocular gene transfer with self-complementary AAV vectors. Investigative Ophthalmology & Visual Science (IOVS). 2007;48(7): 3324–3328. https://doi.org/10.1167/iovs.06-1306
17. Rincon M.Y., de Vin F., Duqué S.I., Fripont S., Castaldo S.A., Bouhuijzen-Wenger J., Holt M.G. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector. Gene Ther. 2018;25(2):83–92. https://doi.org/10.1038/s41434-018-0005-z
18. Wu T., Töpfer K.., Lin SW., Li H., Bian A., Zhou X.Y., High K.A., Ertl H.C. Self-complementary AAVs induce more potent transgene product-specific immune responses compared to a single-stranded genome. Mol. Ther. 2012;20(3):572–579. https://doi.org/10.1038/mt.2011.280
19. McCarty D.M., Monahan P.E., Samulski R.J. Selfcomplementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 2001;8(16):1248–1554. https://doi.org/10.1038/sj.gt.3301514
20. Katada Y., Kobayashi K., Tsubota K., Kurihara T. Evaluation of AAV-DJ vector for retinal gene therapy. Peer J. 2019;7:e6317. https://doi.org/10.7717/peerj.6317
21. Polyansky D.S., Ryabova E.I., Derkaev A.A., Starkov N.S., Kashapova I.S., Shcheblyakov D.V., Karpov A.P., Esmagambetov I.B. Development of technology for culturing a cell line producing a single-domain antibody fused with the Fc fragment of human IgG1. Fine Chem. Technol. 2024;19(3): 240–257. https://doi.org/10.32362/2410-6593-2024-19-3-240-257
Review
For citations:
Ryabova E.I., Derkaev A.A., Esmagambetov I.B., Dovgiy M.A., Blinov A.A., Hossain R.M., Dmitriev O.E., Polyansky D.S., Noskov A.N., Shcheblyakov D.V., Logunov D.Y., Gintsburg A.L. Comparative analysis of three genetic constructs for delivery and expression of a modified single-domain antibody gene in rAAV. Fine Chemical Technologies. 2025;20(6):582-593. https://doi.org/10.32362/2410-6593-2025-20-6-582-593. EDN: VKKHOP
JATS XML






















