Preview

Fine Chemical Technologies

Advanced search

Comparative analysis of three genetic constructs for delivery and expression of a modified single-domain antibody gene in rAAV

https://doi.org/10.32362/2410-6593-2025-20-6-582-593

EDN: VKKHOP

Abstract

Objectives. To obtain and compare the efficiency of three recombinant adeno-associated virus (rAAV) variants expressing the gene of the modified single-domain antibody B11-Fc specific to botulinum toxin type A (BoNT/A): rAAV-DJ-CMV-B11-Fc, rAAV-DJ-CASI-B11-Fc, and scAAV-DJ-CMV-B11-Fc.

Methods. The AAV-DJ Packaging System (Cell Biolabs, USA) was used to create target constructs and obtain rAAV. Expression of the B11-Fc antibody gene in the obtained rAAV was assessed in vitro (HEK293, CHO-S, and C2C12 cell lines) and in vivo (BALB/c mice) using biolayer interferometry. The protective properties of the drugs were investigated on the model of lethal intoxication of mice with

BoNT/A.

Results. The rAAV-DJ-CMV-B11-Fc drug demonstrated a high level of B11-Fc antibody production both in vitro and in vivo without a significant decrease in concentration for at least 6 months. Comparable levels of B11-Fc production were demonstrated by rAAV-DJ-CASI-B11-Fc and scAAV-DJ-CMV-B11-Fc drugs in both in vitro and in vivo studies, with the exception of C2C12 cells, where rAAV-DJ-CASI-B11-Fc demonstrated the highest efficacy. When investigating the protective activity of the drugs against a lethal dose of BoNT/A, it was found that rAAV-DJ-CASI-B11-Fc possessed more pronounced activity in the first two days following administration as compared to rAAV-DJ-CMV-B11-Fc. However, at later stages, starting from 3 months, the rAAV-DJ-CMV-B11-Fc drug product demonstrated the most pronounced protection against high doses of BoNT/A.

Conclusions. The obtained data show that rAAV-DJ-CASI-B11-Fc should be used for the induction of protection against BoNT/A at early stages (24–48 h) after administration, whereas for protection against the highest doses of BoNT/A in the long term, rAAV-DJ-CMV-B11-Fc should be used. Studies into the specific activity of the drugs at later stages after administration are still ongoing.

About the Authors

E. I. Ryabova
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Ekaterina I. Ryabova, Junior Researcher, Laboratory of Immunobiotechnology

Scopus Author ID 57301278100, ResearcherID AAE-7335-2022

18, Gamaleya ul., Moscow, 123098


Competing Interests:

 The authors declare no conflicts of interest 



A. A. Derkaev
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Artem A. Derkaev, Junior Researcher, Laboratory of Immunobiotechnology

Scopus Author ID 57381507000, ResearcherID AFU-7075-2022

18, Gamaleya ul., Moscow, 123098


Competing Interests:

The authors declare no conflicts of interest.



I. B. Esmagambetov
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Ilias B. Esmagambetov, Cand. Sci. (Biol.), Leading Researcher, Head of the Laboratory of Stromal Regulation of Immunity

Scopus Author ID 56120429700, ResearcherID E-3327-2014

18, Gamaleya ul., Moscow, 123098


Competing Interests:

The authors declare no conflicts of interest.



M. A. Dovgiy
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Mikhail A. Dovgiy, Junior Researcher, Laboratory of Immunobiotechnology

ResearcherID AFV-2114-2022

18, Gamaleya ul., Moscow, 123098


Competing Interests:

The authors declare no conflicts of interest.



A. A. Blinov
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Anton A. Blinov, Laboratory Research Assistant, Laboratory of Stromal Regulation of Immunity

ResearcherID OCL-6033-2025

18, Gamaleya ul., Moscow, 123098


Competing Interests:

The authors declare no conflicts of interest.



R. M. Hossain
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Roza M. Hossain, Junior Researcher, Laboratory of Stromal Regulation of Immunity

ResearcherID OCL-6134-2025

18, Gamaleya ul., Moscow, 123098


Competing Interests:

The authors declare no conflicts of interest.



O. E. Dmitriev
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Oleg E. Dmitriev, Leading Engineer, Laboratory of Stromal Regulation of Immunity

ResearcherID ODJ-2714-2025

18, Gamaleya ul., Moscow, 123098


Competing Interests:

The authors declare no conflicts of interest.



D. S. Polyansky
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Dmitry S. Polyansky, Assistant Professor, I.P. Alimarin Department of Analytical Chemistry

Scopus Author ID 57890564200

78, Vernadskogo pr., Moscow, 119545


Competing Interests:

The authors declare no conflicts of interest.



A. N. Noskov
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Anatoly N. Noskov, Dr. Sci. (Biol.), Leading Researcher, Laboratory of Immunobiotechnology

Scopus Author  ID 7005685081

18, Gamaleya ul., Moscow, 123098


Competing Interests:

The authors declare no conflicts of interest.



D. V. Shcheblyakov
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Dmitry V. Shcheblyakov, Dr. Sci. (Biol.), Leading Researcher, Head of the Department of Genetics and Molecular Biology of Bacteria, Head of the Laboratory of Immunobiotechnology

Scopus Author ID 35073056900, ResearcherID E-5899-2014

18, Gamaleya ul., Moscow, 123098


Competing Interests:

The authors declare no conflicts of interest.



D. Y. Logunov
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Denis Y. Logunov, Academician at the Russian Academy of Sciences, Dr. Sci. (Biol.), Deputy Director for Research

Scopus Author ID 22835557900, ResearcherID E-8300-2014

18, Gamaleya ul., Moscow, 123098


Competing Interests:

The authors declare no conflicts of interest.



A. L. Gintsburg
N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Alexander L. Gintsburg, Academician at the Russian Academy of Sciences, Academician at the Russian Academy of Medical Sciences, Dr. Sci. (Biol.), Professor, Director 

Scopus Author ID 7005111491

18, Gamaleya ul., Moscow, 123098


Competing Interests:

The authors declare no conflicts of interest.



References

1. Laursen N.S., Friesen R.H., Zhu X., Jongeneelen M., Blokland S., Vermond J., Van Eijgen A., Tang C., Van Diepen H., Obmolova G., van der Neut Kolfschoten M., et al. Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science. 2018;362(6414):598–602. https://doi.org/10.1126/science.aaq0620

2. Esmagambetov I.B., Ryabova E.I., Derkaev A.A., Shcheblyakov D.V., Dolzhikova I.V., Favorskaya I.A., et al. rAAV expressing recombinant antibody for emergency prevention and long-term prophylaxis of COVID-19. Front. Immunol. 2023;14:1129245. https://doi.org/10.3389/fimmu.2023.1129245

3. Derkaev A.A., Ryabova E.I., Esmagambetov I.B., Shcheblyakov D.V., Godakova S.A., Vinogradova I.D., Noskov A.N., Logunov D.Y., Naroditsky B.S., Gintsburg A.L. rAAV expressing recombinant neutralizing antibody for the botulinum neurotoxin type a prophylaxis. Front. Microbiol. 2022;13:960937. https://doi.org/10.3389/fmicb.2022.960937

4. Godakova S.A., Noskov A.N., Vinogradova I.D., Ugriumova G.A., Solovyev A.I., Esmagambetov I.B., et al. Camelid VHHs fused to human fc fragments provide long term protection against botulinum neurotoxin a in mice. Toxins. 2019;11(8):464. https://doi.org/10.3390/toxins11080464

5. Ryabova E.I., Derkaev A.A., Esmagambetov I.B., Shcheblyakov D.V., Dovgiy M.A., Byrikhina D.V., Prokofiev V.V., Chemodanova I.P. Comparison of different technologies for producing recombinant adeno-associated virus on a laboratory scale. BIOpreparaty. Profilaktika, diagnostika, lechenie = BIOpreparations. Prevention, Diagnosis, Treatment. 2021;21(4):266–278 (in Russ.). https://doi.org/10.30895/2221-996X-2021-21-4-266-278

6. Derkaev A.A., Ryabova E.I., Esmagambetov I.B., Shcheblyakov D.V., Noskov A.N., Vinogradova I.D., Prokofiev V.V., Polyansky D.S., Logunov D.Y., Gintsburg A.L. A modified single-domain antibody candidate for the treatment of botulism caused by botulinum toxin type A. BIOpreparaty. Profilaktika, diagnostika, lechenie = BIOpreparations. Prevention, Diagnosis, Treatment. 2025;25(1): 58–70 (in Russ.). https://doi.org/10.30895/2221-996X-2025-591

7. Cabrera A., Edelstein H.I., Glykofrydis F., Love K.S., Palacios S., Tycko J., Zhang M., Lensch S., Shields C.E., Livingston M., Weiss R., et al. The sound of silence: Transgene silencing in mammalian cell engineering. Cell Syst. 2022;13(12):950–973. https://doi.org/10.1016/j.cels.2022.11.005

8. Xu L., Daly T., Gao C., Flotte T.R., Song S., Byrne B.J., Sands M.S.., Ponder K.P. CMV-β-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1α promoter and results in therapeutic levels of human factor X in mice. Human Gene Ther. 2001;12(5):563–573. https://doi.org/10.1089/104303401300042500

9. Wang L., Bell P., Somanathan S., Wang Q., He Z., Yu H., McMenamin D., Goode T., Calcedo R., Wilson J.M. Comparative study of liver gene transfer with AAV vectors based on natural and engineered AAV capsids. Mol. Ther. 2015;23(12):1877–1887. https://doi.org/10.1038/mt.2015.179

10. Choi V.W., McCarty D.M., Samulski R.J. AAV hybrid serotypes: Improved vectors for gene delivery. Curr. Gene Ther. 2005;5(3):299–310. https://doi.org/10.2174/1566523054064968

11. Wang D., Tai P.W., Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Rev. Drug Discov. 2019;18(5):358–378. https://doi.org/10.1038/s41573-019-0012-9

12. Brydon E.M., Bronstein R., Buskin A., Lako M., Pierce E.A., Fernandez-Godino R. AAV-mediated gene augmentation therapy restores critical functions in mutant PRPF31+/− iPSC-derived RPE cells. Mol. Ther. Methods Clin. Develop. 2019;15:392–402. https://doi.org/10.1016/j.omtm.2019.10.014

13. Xing M., Wang X., Chi Y., Zhou D. Gene therapy for colorectal cancer using adenovirus-mediated full-length antibody, cetuximab. Oncotarget. 2016;7(19):28262. https://doi.org/10.18632/oncotarget.8596

14. Hollidge B.S., Carroll H.B., Qian R., Fuller M.L., Giles A.R., Mercer A.C., Danos O., Liu Y., Bruder J.T., Smith J.B. Kinetics and durability of transgene expression after intrastriatal injection of AAV9 vectors. Front. Neurol. 2022;13:1051559 https://doi.org/10.3389/fneur.2022.1051559

15. McCarty D.M. Self-complementary AAV vectors; advances and applications. Mol. Ther. 2008;16(10):1648–1656. https://doi.org/10.1038/mt.2008.171

16. Yokoi K., Kachi S., Zhang H.S., Gregory P.D., Spratt S.K., Samulski R.J., Campochiaro P.A. Ocular gene transfer with self-complementary AAV vectors. Investigative Ophthalmology & Visual Science (IOVS). 2007;48(7): 3324–3328. https://doi.org/10.1167/iovs.06-1306

17. Rincon M.Y., de Vin F., Duqué S.I., Fripont S., Castaldo S.A., Bouhuijzen-Wenger J., Holt M.G. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector. Gene Ther. 2018;25(2):83–92. https://doi.org/10.1038/s41434-018-0005-z

18. Wu T., Töpfer K.., Lin SW., Li H., Bian A., Zhou X.Y., High K.A., Ertl H.C. Self-complementary AAVs induce more potent transgene product-specific immune responses compared to a single-stranded genome. Mol. Ther. 2012;20(3):572–579. https://doi.org/10.1038/mt.2011.280

19. McCarty D.M., Monahan P.E., Samulski R.J. Selfcomplementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 2001;8(16):1248–1554. https://doi.org/10.1038/sj.gt.3301514

20. Katada Y., Kobayashi K., Tsubota K., Kurihara T. Evaluation of AAV-DJ vector for retinal gene therapy. Peer J. 2019;7:e6317. https://doi.org/10.7717/peerj.6317

21. Polyansky D.S., Ryabova E.I., Derkaev A.A., Starkov N.S., Kashapova I.S., Shcheblyakov D.V., Karpov A.P., Esmagambetov I.B. Development of technology for culturing a cell line producing a single-domain antibody fused with the Fc fragment of human IgG1. Fine Chem. Technol. 2024;19(3): 240–257. https://doi.org/10.32362/2410-6593-2024-19-3-240-257


Review

For citations:


Ryabova E.I., Derkaev A.A., Esmagambetov I.B., Dovgiy M.A., Blinov A.A., Hossain R.M., Dmitriev O.E., Polyansky D.S., Noskov A.N., Shcheblyakov D.V., Logunov D.Y., Gintsburg A.L. Comparative analysis of three genetic constructs for delivery and expression of a modified single-domain antibody gene in rAAV. Fine Chemical Technologies. 2025;20(6):582-593. https://doi.org/10.32362/2410-6593-2025-20-6-582-593. EDN: VKKHOP

Views: 35

JATS XML

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)