Preview

Fine Chemical Technologies

Advanced search

CHEMICAL EQUILIBRIUM IN THE PROPIONIC ACID - ETHANOL - ETHYL PROPIONATE - WATER SYSTEM AND EXTRACTION PROCESSES WITH PARTICIPATION OF DEEP EUTECTIC SOLVENTS

https://doi.org/10.32362/2410-6593-2019-14-1-47-58

Full Text:

Abstract

New experimental data on the chemical equilibrium in the propionic acid - ethanol - ethyl propionate - water system at 293.15 K and atmospheric pressure are presented. Chemically equilibrium compositions corresponding to the liquid-liquid equilibrium were obtained by gas chromatographic analysis. Using the method of nuclear magnetic resonance, homogeneous chemically equilibrium compositions were determined and the concentration equilibrium constant is calculated. The surface of chemical equilibrium and the region of splitting chemically equilibrium compositions are represented in the square of the transformed concentration variables. Comparison of the data obtained in the work with the literature was carried out at 303.15 and 313.15 K. It was found that the region of such compositions decreases with increasing temperature, while the surface of chemical equilibrium does not change the shape and position in the concentration space in the temperature range 293.15-313.15 K and atmospheric pressure. Liquid-liquid equilibrium compositions have also been obtained by gas chromatographic analysis for ethanol and ethyl propionate in the pseudo-ternary system using deep eutectic solvents (DES) based on choline chloride and glycerol / urea in whole range of concentration. The analysis of the extraction properties of DES showed the highest efficiency of DES based on choline chloride and urea. Experimental data on phase equilibrium are processed using Othmer-Tobias and Hand models. The calculated correlation coefficient (more than 0.99) indicates a high internal consistency of the experimental data obtained in this work.

About the Authors

M. A. Toikka
St. Petersburg State University, Institute of Chemistry
Russian Federation

Ph.D., Associate Professor, Chair of Chemical Thermodynamics and Kinetics

7-9, Universitetskaya Emb., St. Petersburg, 199034, Russia

Researcher ID: I-7147-2013



A. A. Samarov
St. Petersburg State University, Institute of Chemistry
Russian Federation

Ph.D., Assistant Professor, Chair of Chemical Thermodynamics and Kinetics, Institute of Chemistry

7-9, Universitetskaya Emb., St. Petersburg, 199034, Russia

Researcher ID: I-7156-2013



A. A. Sadaev
St. Petersburg State University, Institute of Chemistry
Russian Federation

Postgraduate Student, Chair of Chemical Thermodynamics and Kinetics, Institute of Chemistry

7-9, Universitetskaya Emb., St. Petersburg 199034, Russia

Researcher ID: O-6613-2017



A. A. Senina
St. Petersburg State University, Institute of Chemistry
Russian Federation

Student, Chair of Chemical Thermodynamics and Kinetics,

7-9, Universitetskaya Emb., St. Petersburg, 199034, Russia

Researcher ID: X-6846-2018



O. L. Lobacheva
St. Petersburg Mining University
Russian Federation

Ph.D., Associate Professor, Chair of General Chemistry, Faculty of Mineral Processing

2, 21st Line, St. Petersburg 199106, Russia

Researcher ID: G-6008-2011.



References

1. Frolkova A.V., Akishina A.A., Mayevsky M.A., Ablizin M.A. Flowsheets of multicomponent multiphase systems separation and material balance calculation features. Theoretical Foundations of Chemical Engineering. 2017; 51(3): 313-319.

2. Frolkova A.V., Akishina A.A., Frolkova A.K. Binodal varieties of the systems with four-component azeotrope. Theoretical Foundations of Chemical Engineering. 2016; 50(1): 110-118.

3. Serafimov L., Frolkova A. Determination of vapor–liquid equilibrium diagrams of multicomponent systems. Chem. Papers. 2016; 70(12): 1578-1589.

4. Pisarenko Yu.A., Cardona K.A., Serafimov L.A. Reaction distillation processes to achieve research and practical use. Moscow: Luch Publ., 2001. 266 p. (in Russ.).

5. Heintz A., Verevkin S.P. Simultaneous study of chemical and vapour – liquid equilibria in the reacting system of the methyl cumyl ether synthesis from methanol and α-methyl-styrene. Fluid Phase Equilibria. 2001; 179: 85-100.

6. Toykka A.M., Toykka M.A., Pisarenko Yu.A., Serafimov L.A. Liquid – vapor phase equilibria in systems with esterification reaction. Teoreticheskiye osnovy khimicheskoy tekhnologii (Theoretical Foundations of Chemical Engineering). 2009; 43(2): 141-154. (in Russ.)

7. Toykka A.M., Samarov A.A., Toykka M.A. Phase and chemical equilibria in multicjmponent fluid systems with a chemical reaction. Uspehi khimii (Russian Chemical Reviews). 2015: 84(4): 378-392.

8. Toykka A.M., Toykka M.A., Trofimova M.A. Chemical equilibrium in heterogeneous fiuid phase system: Thermodynamic regularities and topology of phase diagrams. Izvestiya Akademii nauk. Ser. Khimicheskaya (Russian Chemical Bulletin). 2012; 64(4): 741-751.

9. Toikka M., Toikka A. Peculiarities of phase diagrams of reactive liquid–liquid systems. Pure Appl. Chem. 2013; 85(1): 277-288.

10. Toykka M.A., Tsvetov N.S., Toykka A.M. Experimental study of chemical equilibrium and vaporliquid equilibrium calculation for chemical-equilibrium states of the n-propanol-acetic acid-n-propyl acetatewater system. Theoretical Foundations of Chemical Engineering. 2013; 47(5): 554-562.

11. Samarov A.A., Toykka M.A., Naumkin P.V., Toykka A.M. Chemical equilibrium and liquid-phase splitting in acid + n-propanol + n-propyl acetate + water system at 293.15 and 353.15 K. Theoretical Foundations of Chemical Engineering. 2016; 50(5): 739-745.

12. Golikova А., Samarov А., Trofimova M., Rabdano S., Toikka M., Pervukhin O., Toikka A.

13. Chemical equilibrium for the reacting system acetic acid–ethanol–ethyl acetate–water at 303.15 K, 313.15 K and 323.15 K. J. Solut. Chem. 2017; 46(2): 374-387.

14. Toikka M., Sadaeva A., Samarov A., Golikova A., Trofimova M., Shcherbakova N., Toikka A. Chemical equilibrium for the reactive system propionic acid + ethanol + ethyl propionate + water at 303.15 and 313.15 K. Fluid Phase Equilibria. 2017; 451: 91-95.

15. Luyben W.L., Chien I-L. Design and control of distillation system for separating azeotropes. WileyAIChE, 2010. 472 p.

16. Rodríguez N.R., González A.S.B., Tijssen P.M.A., Kroon M.C. Low transition temperature mixtures (LTTMs) as novel entrainers in extractive distillation. Fluid Phase Equilibria. 2015; 385: 72-78.

17. Sazonova A.Y., Raeva V.M., Frolkova A.K. Design of extractive distillation process with mixed entrainer. Chem. Papers. 2016; 70: 594-601.

18. Jenkins R.W., Munro M., Nash S., Chuck C.J. Potential renewable oxygenated biofuels for the aviation and road transport sectors. Fuel. 2013; 103: 593-599.

19. Olson E.S., Aulich T.R., Sharma R., Timpe R.C. Ester fuels and chemicals from biomass. Appl. Biochem. & Biotechnol. 2003; 105: 843-851.

20. Matsuda H., Takahara H., Fujino S., Constantinescu D., Kurihara K., Tochigi K., Ochi K., Gmehling J. Selection of entrainers for the separation of the binary azeotropic system methanol+dimethyl carbonate by extractive distillation. Fluid Phase Equilibria. 2011; 310: 166-181.

21. Zhang Q. Li, J., Zhu Z. Lei, J., Zhu J., Huang X. Selection of ionic liquids as entrainers for the separation of ethyl acetate and ethanol. Ind. & Eng. Chem. Res. 2009; 48: 9006-9012.

22. Paiva A., Craveiro R., Aroso I., Martins M., Reis R.L., Duarte A.R.C. Natural deep eutectic solvents – Solvents for the 21st century. ACS Sustainable Chemistry & Engineering. 2014; 2: 1063-1071.

23. Smith E.L., Abbott A.P., Ryder K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014; 114: 11060-11082.

24. Contino F., Foucher F., Mounaïm-Rousselle C., Jeanmart H. Experimental characterization of ethyl acetate, ethyl propionate, and ethyl butanoate in a homogeneous charge compression ignition engine. Energy Fuels. 2011; 25: 998-1003.

25. Badawy T., Williamson J., Xu H. Laminar burning characteristics of ethyl propionate, ethyl butyrate, ethyl acetate, gasoline and ethanol fuels. Fuel. 2016; 183: 627-640.

26. Kufian M.Z., Majid S.R. Performance of lithium-ion cells using 1 M LiPF6 in EC/DEC (v/v=1/2) electrolyte with ethyl propionate additive. Ionics. 2010; 16: 409-416.

27. Garcia G., Aparicio S., Ullah R., Atilhan M. Deep eutectic solvents: Physicochemical properties and gas separation applications. Energy and Fuels. 2015; 29: 2616-2644.

28. Zharov V.T. Processes of open evaporation of solutions of chemically reacting substances. Zhural fizicheskoi khimii (Russian Journal of Physical Chemistry). 1970; 44(8): 1967-1974. (in Russ.)

29. Barbosa D., Doherty M.F. A new set of composition variables for the representation of reactivephase diagrams. Proceed. of the Royal Society of London. A. 1987; 413: 459-464.

30. Othmer D.F., Tobias P.E. Liquid–liquid extraction data. Ind. & Eng. Chem. 1942; 34: 690-692.

31. Hand D.B. Dineric distribution. J. Phys. Chem. 1930; 34: 1961-2000.

32. Samarov A., Shner N., Mozheeva E., Toikka A. Liquid–liquid equilibrium of alcohol–ester systems with deep eutectic solvent on the base of choline chloride. J. Chem. Thermodynamics. 2019; 131: 369-374.


Supplementary files

1. Chemical equilibrium surface in the square of transformed concentration variables (αi) for the system
Subject
Type Research Instrument
View (129KB)    
Indexing metadata

For citation:


Toikka M.A., Samarov A.A., Sadaev A.A., Senina A.A., Lobacheva O.L. CHEMICAL EQUILIBRIUM IN THE PROPIONIC ACID - ETHANOL - ETHYL PROPIONATE - WATER SYSTEM AND EXTRACTION PROCESSES WITH PARTICIPATION OF DEEP EUTECTIC SOLVENTS. Fine Chemical Technologies. 2019;14(1):47-58. (In Russ.) https://doi.org/10.32362/2410-6593-2019-14-1-47-58

Views: 599


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)