Preview

Fine Chemical Technologies

Advanced search

Determining the phase stability of luminescent materials based on the solid solutions of oxyorthosilicates (Lu1−xLnx)[(SiO4)0.5O0.5], where Ln = La−Yb

https://doi.org/10.32362/2410-6593-2020-15-5-54-62

Full Text:

Abstract

Objectives. This study aimed to predict the limits of substitution and stability of luminescent materials based on low-temperature modifications of solid solutions (spatial group P21/c) with lutetium oxyorthosilicates (Lu1−xLnx)[(SiO4)0.5O0.5], where Ln represents the rare-earth elements (REEs) of the La–Yb series.

Methods. The V.S. Urusov’s crystal energy theory of isomorphous substitutions and a crystallochemical approach in the regular solid solution approximation were used to calculate the energies of the mixing (interaction parameters) of the solid solutions.

Results. Using the V.S. Urusov’s theory, we calculated the energies of mixing (interaction parameters) in the systems under study. The dependences of the decomposition temperatures of solid solutions on the REE number and composition (x) were obtained and used to create a diagram of the thermodynamic stability of the solid solutions, allowing us to predict the substitution limits depending on the temperature or determine the decomposition temperature using the given substitution limits.

Conclusions. The results of the study can be useful when choosing the ratio of components in matrices (host materials) and the amount of the activator (dopant) in the new luminescent, laser, and other materials based on low-temperature modifications of solid solutions of “mixed” REE oxyorthosilicates (Lu1−xLnx)[(SiO4)0.5O0.5].

About the Authors

E. I. Get’man
Department of Inorganic, Organic, and Analytical Chemistry, Faculty of Chemistry, Biology, and Biotechnologies, Vasyl’ Stus Donetsk National University
Ukraine

Eugeni I. Get’man, Dr. of Sci. (Chemistry), Full Professor. Scopus Author ID 6602738183

21, vul. 600–richchia, Vinnytsia, 21021, Ukraine



Yu. A. Oleksii
Department of Inorganic, Organic, and Analytical Chemistry, Faculty of Chemistry, Biology, and Biotechnologies, Vasyl’ Stus Donetsk National University
Ukraine

Yuliia A. Oleksii, Master Student, Laboratory Assistant of the Educational-Scientific Laboratory of Special Research Methods in Analytical Chemistry

21, vul. 600–richchia, Vinnytsia, 21021, Ukraine



S. V. Radio
Department of Inorganic, Organic, and Analytical Chemistry, Faculty of Chemistry, Biology, and Biotechnologies, Vasyl’ Stus Donetsk National University
Ukraine

Serhii V. Radio, Cand. of Sci. (Chemistry), Head of the Department for Research, Associate Professor. Scopus Author ID 12765904800, ResearcherID P-9022-2017

21, vul. 600–richchia, Vinnytsia, 21021, Ukraine



L. I. Ardanova
Department of Biochemistry, Chemistry, and Geology, Minnesota State University
United States

Lyudmyla I. Ardanova, Associate Professor. Scopus Author ID 7801510561

241 Ford Hall, Mankato, Minnesota, 56001, USA



References

1. Wang J., Tian S., Li G., Liao F., Jing X. Preparation and X-ray characterization of low-temperature phases of R2SiO5 (R = rare earth elements). Mater. Res. Bull. 2001;36(10):1855-1861. https://doi.org/10.1016/S0025-5408(01)00664-X

2. Liu Y., Xu C.N., Nonaka K., Tateyama H. Strong blue, green and red light emission at elevated temperatures from Y2SiO5 doped by the rare-earth ions. J. Mater. Sci. 2001;36:4361-4364. https://doi.org/10.1023/A:1017953913334

3. Loutts G., Zagumennyi A., Lavrishchev S., Zavartsev Yu., Studenikin P. Czochralski growth and characterization of (Lul–xGdx)2SiO5 single crystals for scintillators. J. Cryst. Growth. 1997;174(1-4):331-336. https://doi.org/10.1016/S0022-0248(96)01171-2

4. Dominiak-Dzik G., Ryba-Romanowski W., Lisiecki R., Solarz P., Macalik B., Berkowski M., Gzowacki M., Domukhovski V. The Czochralski Growth of (Lu1–xGdx)2SiO5:Dy Single Crystals: Structural, Optical, and Dielectric Characterization. Cryst. Growth Des. 2010;10(8):3522-3530. https://doi.org/10.1021/cg100429b

5. Glowacki M., Dominiak-Dzik G., Ryba-Romanowski W., Lisiecki R., Strzep A., Runka T., Drozdowski M., Domukhovski V., Diduszko R., Berkowski M. Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1–x)2SiO5 single crystals grown by the Czochralski method. J. Solid State Chem. 2012;186:268-277. https://doi.org/10.1016/j.jssc.2011.12.021

6. Michail C., David S., Liaparinos P., Valais I., Nikolopoulos D., Kalivas N., Toutountzis A., Cavouras D., Kandarakis I., Panayiotakis G. Evaluation of the imaging performance of LSO powder scintillator for use in X-ray mammography. Nucl. Instrum. Methods Phys. Res., Sect. A. 2007;580(1):558-561. https://doi.org/10.1016/j.nima.2007.05.234

7. Michail C.M., Fountos G.P., David S.L., Valais I.G., Toutountzis A.E., Kalyvas N.E., Kandarakis I.S., Panayiotakis G.S. A comparative investigation of Lu2SiO5:Ce and Gd2O2S:Eu powder scintillators for use in X-ray mammography detectors. Meas. Sci. Technol. 2009;20(10):104008.

8. Zheng L., Su L., Xu J. Growth and Characterization of Ytterbium Doped Silicate Crystals for Ultra-Fast Laser Applications. Modern Aspects of Bulk Crystal and Thin Film Preparation. 2012;25-42. https://doi.org/10.5772/30457. Available from: https://www.intechopen.com/books/modernaspects-of-bulk-crystal-and-thin-film-preparation/growthand-characterization-of-ytterbium-doped-silicate-crystals-forultra-fast-laser-applications

9. Yukihara E.G., Jacobsohn L.G., Blair M.W., Bennett B.L., Tornga S.C., Muenchausen R.E. Luminescence properties of Ce-doped oxyorthosilicate nanophosphors and single crystals. J. Lumin. 2010;130(12):2309-2316. https://doi.org/10.1016/j.jlumin.2010.07.010

10. Głowacki M.M. Właściwości optyczne i strukturalne krzemianow ziem rzadkich i ich roztworow stałych. Praca doktorska (Optical and structural properties of rare-earth silicates and their solid solutions. Doctoral thesis). Warszawa: Instytut Fizyki Polskiej Akademii Nauk; 2012. 1-102 (in Polish).

11. Ryba-Romanowski W., Strzęp A., Lisiecki R., Berkowski M., Rodriguez-Rodriguez H., Martin I. R. Effect of substitution of lutetium by gadolinium on emission characteristics of (LuxGd1–x)2SiO5:Sm3+ single crystals. Opt. Mater. Express. 2014;4(4):739-752. https://doi.org/10.1364/OME.4.000739

12. Kurtsev D.O. Obtaining of efficient scintillators based on Lu2xGd2–2xSiO5:Ce (LGSO:Ce) crystals. PhD Manuscript. Kharkiv: Institute for Single Crystals of NAS of Ukraine; 2016. (In Ukrainian).

13. Urusov V.S. Teoriya izomorfnoi smesimosti (Theory of isomorphous miscibility). Мoscow: Nauka; 1977. 251 р. (in Russ.).

14. Becker R. Über den Aufbau binarer Legierungen. Z. Metallkunde. 1937;29:245-249 (in German).

15. Urusov V.S. Energetic theory of miscibility gaps in mineral solid solutions. Fortschr. Mineral. 1975;52:141-150.

16. Urusov V.S., Tauson V.L., Akimov V.V. Geokhimiya tverdogo tela (Geochemistry of solid state). Moscow: GEOS; 1997. 500 р. (in Russ.). ISBN 5-891 18-012-X

17. Muenchausen R.E., McKigney E.A., Jacobsohn L.G., Blair M.W., Bennett B.L., Wayne Cooke D. Science and Application of Oxyorthosilicate Nanophosphors. IEEE Transactions on Nuclear Science. 2008;55(3):1532-1535. https://doi.org/10.1109/TNS.2008.922844

18. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 1976;32(5):751-767. https://doi.org/10.1107/S0567739476001551

19. Li K., Xue D. Estimation of Electronegativity Values of Elements in Different Valence States. J. Phys. Chem. A. 2006;110(39):11332-11337. https://doi.org/10.1021/jp062886k

20. Batsanov S.S. The Concept of Electronegativity. Conclusions and Prospects. Russ. Chem. Rev. 1968;37(5):332-351. http://dx.doi.org/10.1070/RC1968v037n05ABEH001639

21. Felsche J. The crystal chemistry of the rare-earth silicates. In: Rare Earths. Structure and Bonding. 1973;13:99- 197. Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-06125-8_3

22. Hoppe R. Madelung Constants as a New Guide to the Structural Chemistry of Solids. Adv. Fluor. Chem. 1970;6:387-438.

23. Get’man E.I., Radio S.V. Mixing Energies (Interaction Parameters) and Decomposition Temperatures in Solid Solutions of Monazites of Rare Earth Elements with Structure La1– xLnxPO4. Inorg. Mater. 2017;(53)7):718-721. https://doi.org/10.1134/S0020168517070044

24. Get’man E.I., Radio S.V., Ardanova L.I. Predicting the Phase Stability of Sc1–xLnxPO4 (Ln = Gd–Lu, Y) Zircon-Structured Solid Solutions. Inorg. Mater. 2018;54(6):596-600. https://doi.org/10.1134/S0020168518060031

25. Garner W.E. Chemistry of the Solid State. London: Butterworths Scientific Publications; 1955. 417 p.

26. Grynyov B., Ryzhikov V., Kim J.K., Jae M. Scintillator Crystals, Radiation Detectors & Instruments on Their Base. Kharkiv, Ukraine: Nat. Acad. of Sciences of Ukraine; 2004. 374 p.

27. Fan L., Jiang M., Lin D., Zhou D., Shi Y., Wu Y., Yao H., Xu F., Xie J., Lei F., Zhang L., Zhang J. Densification of ceriumdoped lutetium oxyorthosilicate scintillation ceramics by hot isostatic pressing. J. Alloys Compd. 2017;720:161-168.

28. Xie J., Zhang F., Shen S., Lin D., Fan L., Zhang L., Lei F., Shi Y., Liu P. Luminescent properties study of Lu2SiO5:(Ce3+, Tb3+) optical films prepared by sol-gel method. In: Proc. SPIE 9796, Selected Papers of the Photoelectronic Technology Committee Conferences held November 2015, 97960T (26 January 2016). https://doi.org/10.1117/12.2228576


Supplementary files

1. Fig. 1. Dependence of the volumes of the unit cells of low-temperature modifications of Ln[(SiO4)0.5O0.5] on the ionic radii of REE.
Subject
Type Исследовательские инструменты
View (191KB)    
Indexing metadata
2. This is to certify that the paper titled Determining the phase stability of luminescent materials based on the solid solutions of oxyorthosilicates (Lu1–xLnx)*(SiO4)0.5O0.5+, where Ln = La–Yb commissioned to us by Eugeni I. Get’man, Yuliia A. Oleksii, Serhii V. Radio, Lyudmyla I. Ardanova has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc.
Subject CERTIFICATE OF EDITING
Type Other
View (459KB)    
Indexing metadata
  • Using the V.S. Urusov’s crystal energy theory of isomorphous substitutions, the energies of mixing in the low-temperature modifications of solid solutions (spatial group P21/c) with lutetium oxyorthosilicates (Lu1−xLnx)[(SiO4)0.5O0.5], where Ln represents the rare-earth elements (REEs) of the La–Yb series, were calculated.
  • The dependences of the decomposition temperatures of solid solutions on the REE number and composition were obtained and used to create a diagram of the thermodynamic stability of the solid solutions.
  • It allowed us to predict the substitution limits depending on the temperature or determine the decomposition temperature using the given substitution limits. 

For citation:


Get’man E.I., Oleksii Yu.A., Radio S.V., Ardanova L.I. Determining the phase stability of luminescent materials based on the solid solutions of oxyorthosilicates (Lu1−xLnx)[(SiO4)0.5O0.5], where Ln = La−Yb. Fine Chemical Technologies. 2020;15(5):54-62. https://doi.org/10.32362/2410-6593-2020-15-5-54-62

Views: 83


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)