Preview

Fine Chemical Technologies

Advanced search

Quantification of polysorbate 80 in biopharmaceutical formulations implementing an optimized colorimetric approach

https://doi.org/10.32362/2410-6593-2020-15-3-70-77

Full Text:

Abstract

Objectives. We hereby describe an improvement of a previously developed quantification technique for polysorbate 80 in biopharmaceutical formulations (darbepoetin alfa and eculizumab) and report the validation of the new approach.

Methods. Polysorbate was isolated from analyte samples by protein precipitation using an organic solvent, followed by supernatant evaporation in vacuum. Polysorbate was derivatized using a ferric thiocyanate reagent and extracted into an organic phase; the relevant optical density measurements were performed.

Results. We established the optimal conditions for each step of the analysis procedure. The accuracy was 97–102% in the tested analytical range, the relative standard deviation did not exceed 5%, and the limit of quantification was 0.01 mg/mL.

Conclusions. The reported approach is highly sensitive; polysorbate isolation and quantification do not depend on the matrix or, most importantly, the protein.

About the Authors

A. S. Seregin
Scientific Center “Kurchatov Institute,” Research Institute for Genetics and Selection of Industrial Microorganisms
Russian Federation

Aleksandr S. Seregin, Postgraduate Student

1, 1st Dorozhnyi pr., Moscow, 117545



N. V. Orlova
Scientific Center “Kurchatov Institute,” Research Institute for Genetics and Selection of Industrial Microorganisms
Russian Federation

Natalya V. Orlova, Cand. of Sci. (Biology), Head of Research Laboratory

1, 1st Dorozhnyi pr., Moscow, 117545



A. D. Askretkov
PHARMAPARK
Russian Federation

Aleksandr D. Askretkov, Chief Chemist-Analyst

8, b. 1, Nauchnyi pr., Moscow, 117246



D. I. Zybin
PHARMAPARK
Russian Federation

Dmitry I. Zybin, Chief Chemist-Analyst. ResearсherID P-8049-2016

8, b. 1, Nauchnyi pr., Moscow, 117246



Yu. A. Seregin
Scientific Center “Kurchatov Institute,” Research Institute for Genetics and Selection of Industrial Microorganisms
Russian Federation

Yuri A. Seregin, Cand. of Sci. (Biology), Deputy Director. ResearсherID I-1874-2017

1, 1st Dorozhnyi pr., Moscow, 117545



References

1. Askretkov A.D., Isaykina P.M., Cherepushkin S.A., Orlova N.V. Determination of polysorbates by spectrophotometry in drugs based on recombinant proteins. Drug development & registration. 2017;(3):124-129 (in Russ.).

2. Hillgren A., Lindgren J., Aldén M. Protection mechanism of Tween 80 during freeze-thawing of a model protein, LDH. Int. J. Pharm. 2002;237(1-2):57-69. https://doi.org/10.1016/s0378-5173(02)00021-2

3. Arakawa T., Kita Y. Protection of bovine serum albumin from aggregation by Tween 80. J. Pharm. Sci. 2000;89(5):646-651. https://doi.org/10.1002/(SICI)1520-6017(200005)89:5%3C646::AID-JPS10%3E3.0.CO;2-J

4. Kiese S., Pappenberger A., Friess W., Mahler H.C. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J. Pharm. Sci. 2008;97(10):4347-4366. https://doi.org/10.1002/jps.21328

5. Kerwin B.A. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J. Pharm. Sci. 2008;97(8):2924-2935. https://doi.org/10.1002/jps.21190

6. Kreilgaard L., Jones L.S., Randolph T.W., Frokjaer S., Flink J.M., Manning M.C., Carpenter J.F. Effect of Tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant human factor XIII. J. Pharm. Sci. 1998;87(12):1597-1603. https://doi.org/10.1021/js980126i

7. Wang W., Wang Y.J., Wang D.Q. Dual effects of Tween 80 on protein stability. Int. J. Pharm. 2008;347(1-2):31-38. https://doi.org/10.1016/j.ijpharm.2007.06.042

8. Tani T.H., Moore J.M., Patapoff T.W. Single step method for the accurate concentration determination of polysorbate 80. J. Chromatogr. A. 1997;786(1):99-106. https://doi.org/10.1016/S0021-9673(97)00540-2

9. Ilko D., Braun A., Germershaus O., Meinel L., Holzgrabe U. Fatty acid composition analysis in polysorbate 80 with high performance liquid chromatography coupled to charged aerosol detection. Eur. J. Pharm. Biopharm. 2015;94:569-574. https://doi.org/10.1016/j.ejpb.2014.11.018

10. Őszi Z., Pethő G. Quantitative determination of polysorbate 20 in nasal pharmaceutical preparations by highperformance liquid chromatography. J. Pharm. Biomed. Anal. 1998;18(4-5):715-720. https://doi.org/10.1016/S0731-7085(98)00265-9

11. Adamo M., Dick L.W. Jr., Qiu D., Lee A.H., Devincentis J., Cheng K.C. A simple reversed phase highperformance liquid chromatography method for polysorbate 80 quantitation in monoclonal antibody drug products. J. Chromatogr. B. 2010;878(21):1865-1870. https://doi.org/10.1016/j.jchromb.2010.04.039

12. Puschmann J., Evers D.H., Müller-Goymann C.C., Herbig M.E. Development of a design of experiments optimized method for quantification of polysorbate 80 based on oleic acid using UHPLC-MS. J. Chromatogr. A. 2019;1599:136-143. https://doi.org/10.1016/j.chroma.2019.04.015

13. Tomlinson A., Demeule B., Lin B., Yadav S. Polysorbate 20 Degradation in Biopharmaceutical Formulations: Quantification of Free Fatty Acids, Characterization of Particulates, and Insights into the Degradation Mechanism. Mol. Pharm. 2015;12(11):3805-3815. https://doi.org/10.1021/acs.molpharmaceut.5b00311

14. Wei Z., Bilbulian S., Li J., Pandey R., O’Connor E., Casas-Finet J., Cash P.W. Universal method for the determination of nonionic surfactant content in the presence of protein. J. Sep. Sci. 2015;38(8):1318-1325. https://doi.org/10.1002/jssc.201400766

15. Kim J., Qiu J. Quantitation of low concentrations of polysorbates in high protein concentration formulations by solid phase extraction and cobalt-thiocyanate derivatization. Anal. Chim. Acta. 2014;806:144-151. https://doi.org/10.1016/j.aca.2013.11.005

16. Savjani N., Babcock E., Khor H.K., Raghani A. Use of ferric thiocyanate derivatization for quantification of polysorbate 80 in high concentration protein formulations. Talanta. 2014;130:542-546. https://doi.org/10.1016/j.talanta.2014.07.052

17. Cucakovich N.B. Determination of Tween 80 in tissue culture media, vaccines, and related products. Anal. Biochem. 1971;40(1):183-186. https://doi.org/10.1016/0003-2697(71)90090-X

18. Khossravi M., Kao Y.H., Mrsny R.J., Sweeney T.D. Analysis methods of polysorbate 20: A new method to assess the stability of polysorbate 20 and established methods that may overlook degraded polysorbate 20. Pharm. Res. 2002;19(5):634-639. https://doi.org/10.1023/a:1015306112979

19. Brito R.M., Vaz W.L. Determination of the critical micelle concentration of surfactants using the fluorescent probe N-phenyl-1-naphthylamine. Anal. Biochem. 1986;152(2):250-255. https://doi.org/10.1016/0003-2697(86)90406-9

20. Yokoyama Y., Atsumi H., Yoshida S., Sone N., Ueda K. Conformational Study for Ionic Aggregates of Poly(oxyethylene) Dodecyl Ethers with Ferric-Thiocyanate Anion through the Intermediary of Potassium Ion. Anal. Sci. 2010;26:1047-1052. https://doi.org/10.2116/analsci.26.1047

21. Yokoyama Y., Hirajima R., Morigaki K., Yamaguchi Y., Ueda K. Alkali-cation affinities of polyoxyethylene dodecylethers and helical conformations of their cationized molecules studied by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2007;18(11):1914-1920. https://doi.org/10.1016/j.jasms.2007.08.004


Supplementary files

1. Effect of incubation time on the optical density of polysorbate 80 (PS80) standards at different concentrations and darbepoetin alfa drug substance samples spiked with PS80 to the specified final concentrations (DEPO).
Subject
Type Research Results
View (77KB)    
Indexing metadata
2. This is to certify that the paper titled Quantification of polysorbate 80 in biopharmaceutical formulations implementing an optimized colorimetric approach commissioned to Enago by Aleksandr S. Seregin, Natalya V. Orlova, Aleksandr D. Askretkov, Dmitry I. Zybin, Yuri A. Seregin has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc.
Subject CERTIFICATE OF EDITING
Type Other
View (406KB)    
Indexing metadata
  • A previously developed technique for quantification of polysorbate 80 in biopharmaceutical formulations, specifically in darbepoetin alfa and eculizumab, was enhanced.
  • The conditions for each step of the analysis procedure were optimized.
  • Isolation and quantification of polysorbate 80 did not depend on the matrix or, most importantly, on the protein.

For citation:


Seregin A.S., Orlova N.V., Askretkov A.D., Zybin D.I., Seregin Yu.A. Quantification of polysorbate 80 in biopharmaceutical formulations implementing an optimized colorimetric approach. Fine Chemical Technologies. 2020;15(3):70-77. https://doi.org/10.32362/2410-6593-2020-15-3-70-77

Views: 70


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)