Preview

Тонкие химические технологии

Расширенный поиск

СЕНСОРЫ НА ОСНОВЕ ФОТОННЫХ КРИСТАЛЛОВ

https://doi.org/10.32362/2410-6593-2018-13-1-5-21

Полный текст:

Аннотация

Химические сенсоры являются одним из наиболее востребованных инструментов современной аналитической химии. В последнее время для аналитических целей стали использовать устройства, действие которых основано на регистрации изменения цвета при отражении видимого излучения от поверхности так называемых «фотонных кристаллов» (ФК). Преимуществами их применения являются возможность визуального детектирования соединений, относительно высокая чувствительность, а также возможность изменять свойства сенсоров путем варьирования элементной базы ФК. Кроме того, влияние различных механических, электрических, оптических, химических и других факторов на исследуемые объекты приводит к дополнительным изменениям спектральных откликов от поверхности ФК с нанесенными образцами. В перспективе подобные устройства можно использовать как тест-системы для обнаружения и анализа определенных классов химических соединений. Обзор посвящен различным типам сенсоров на основе фотонных кристаллов. В нем рассматриваются: фотонные кристаллы природного и синтетического происхождения; различные возможные структуры ФК; причины возникновения характерных оптических свойств; детектирование механических, тепловых, электрических, магнитных и оптических воздействий на ФК, а также воздействие на органические соединения различных классов; области применения сенсоров на основе ФК.

Об авторах

А. А. Козлов
Московский технологический университет (Институт тонких химических технологий имени М.В. Ломоносова)
Россия
Москва 119571, Россия


Ю. А. Гаврилов
Институт химической физики им. Н.Н. Семенова РАН
Россия
Москва 119334, Россия


А. В. Иванов
Московский государственный университет им. М.В. Ломоносова
Россия
Москва 119991, Россия


А. С. Аксенов
Московский технологический университет (Институт тонких химических технологий имени М.В. Ломоносова)
Россия
Москва 119571, Россия


В. Р. Флид
Московский технологический университет (Институт тонких химических технологий имени М.В. Ломоносова)
Россия
Москва 119571, Россия


Список литературы

1. Fenzl C., Hirsch T., Wolfbeis O.S. Photonic crystals for chemical sensing and biosensing // Angew. Chem. Int. Ed. 2014. V. 53. P. 3318-3335.

2. Men D., Liu D., Li Y. Visualized optical sensors based on two/three-dimensional photonic crystals for biochemical // Sci. Bull. 2016. V. 61. P. 1358-1371.

3. Vukusic P., Sambles J.R. Photonic structures in biology // Nature. 2003. V. 424. P. 852-855.

4. Parker A.R., Townley H.E. Biomimetics of photonic nanostructures // Nat. Nanotechnol. 2007. V. 2. P. 347-353.

5. Sato O., Kubo S., Gu Z.-Z. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands // Acc. Chem. Res. 2009. V. 42. P. 1-10.

6. Darragh P.J., Gaskin A.J., Terrell B.C., Sanders J.V. Origin of precious opal // Nature. 1966. V. 209. P. 13-16.

7. Gao X., Yan X., Yao X., Xu L., Zhang K., Zhang J., Yang B., Jiang L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography // Adv. Mater. 2007. V. 19. P. 2213-2217.

8. Kinoshita S., Yoshioka S. Structural colors in nature: the role of regularity and irregularity in the structure // Chem. Phys. Chem. 2005. V. 6. P. 1442-1459.

9. Marlow F., Muldarisnur, Sharifi P., Brinkmann R., Mendive C. Opals: status and prospects // Angew. Chem. 2009. V. 121. P. 6328-6351; Angew. Chem. Int. Ed. 2009. V. 48. P. 6212-6233.

10. Parker A.R., Welch V.L., Driver D., Martini N. Structural colour: Opal analogue discovered in a weevil // Nature. 2003. V. 426. P. 786-787.

11. Seago A.E., Brady P., Vigneron J.-P., Schultz T.D. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera) // Interface. 2009. V. 6. P. S165-S184.

12. Whitney H.M., Kolle M., Andrew P., Chittka L., Steiner U., Glover B.J. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators // Science. 2009. V. 323. P. 130-133.

13. Vignolini S., Rudall P.J., Rowland A.V., Reed A., Moyroud E., Faden R.B., Baumberg J.J., Glover B.J., Steiner U. Pointillist structural color in Pollia fruit // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 15712-15715.

14. Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D. Photonic crystals: Molding the flow of light: 2nd ed. Princeton: Princeton University Press, 2008. 304 р.

15. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics // Phys. Rev. Lett. 1987. V. 58. P. 2059-2062.

16. John S. Strong localization of photons in certain disordered dielectric superlattices // Phys. Rev. Lett. 1987. V. 58. P. 2486-2489.

17. Aly A.H., Aghajamali A., Elsayed H.A., Mobarak M. Analysis of cutoff frequency in a onedimensional superconductor-metamaterial photonic crystal // Physica C. Supercond. Appl. 2016. V. 528. P. 5-8.

18. Lotsch B.V., Ozin G.A. Photonic clays: A new family of functional 1d photonic crystals // ACS Nano. 2008. V. 2. P. 2065-2074.

19. Lotsch B.V., Ozin G.A. Clay Bragg stack optical sensors // Adv. Mater. 2008. V. 20. P. 4079-4084.

20. Wang Z., Zhang J., Xie J., Yin Y., Wang Z., Shen H., Li Y., Li J., Liang S., Cui L., Zhang L., Zhang H., Yang B., Patterning organic/inorganic hybrid bragg stacks by integrating one-dimensional photonic crystals and macrocavities through photolithography: toward tunable colorful patterns as highly selective sensors // ACS Appl. Mater. Interfaces. 2012. V. 4. P. 1397-1403.

21. Ye X.Z., Li Y., Dong J.Y., Xiao J.Y., Ma Y.R., Qi L.M. Facile synthesis of ZnS nanobowl arrays and their applications as 2D photonic crystal sensors // J. Mater. Chem. C. 2013. V. 1. P. 6112-6119.

22. Men D.D., Zhang H.H., Hang L., Liu D., Li X., Cai W., Xiong Q., Li Y. Optical sensor based on hydrogel films with 2D colloidal arrays attached on both the surfaces: Anti-curling performance and enhanced optical diffraction intensity // J. Mater. Chem. C. 2015. V. 3. P. 3659-3665.

23. Men D.D., Zhou F., Hanga L., Lia X., Duana G., Cai W., Li Y. Functional hydrogel film attached with 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor // J. Mater. Chem. C. 2016. V. 4. P. 2117-2122.

24. Aly A.H., Elnaggar S.A., Elsayed H.A. Tunability of two dimensional n-doped semiconductor photonic crystals based on the Faraday effect // Optics Express. 2015. V. 23. P. 15038-15046.

25. Aly A.H., Elsayed H.A., Elnaggar S.A. Tuning the flow of light in two-dimensional metallic photonic crystals based on Faraday effect // J. Modern. Optic. 2017. V. 64. P. 74-80.

26. Cai Z.Y., Smith N.L., Zhang J.T., Asher S.A. Twodimensional photonic crystal chemical and biomolecular sensors // Anal. Chem. 2015. V. 87. P. 5013-25.

27. Ge J., Yin Y. Responsive photonic crystals // Angew. Chem. Int. Ed. 2011. V. 50. P. 1492-1522.

28. Krauss T.F., Rue R.M.D.L., Brand S. Twodimensional photonic-bandgap structures operating at nearinfrared wavelengths // Nature. 1996. V. 383. P. 699-702.

29. Painter O., Lee R.K., Scherer A., Yariv A., Brien J.D.O., Dapkus P.D., Kim I., Two-dimensional photonic band-Gap defect mode laser // Science. 1999. V. 284. P. 1819-1821.

30. Benisty H., Weisbuch C., Labilloy D., Rattier M., Smith C.J.M., Krauss T.F., De La Rue R.M., Houdre R., Oesterle U., Jouanin C., Cassagne D. Optical and confinement properties of two-dimensional photonic crystals // J. Lightwave Technol. 1999. V. 17. P. 2063-2077.

31. Noda S., Chutinan A., Imada M. Trapping and emission of photons by a single defect in a photonic bandgap structure // Nature. 2000. V. 407. P. 608-610.

32. Zhang J.-T., Wang L., Chao X., Velankar S.S., Asher S.A. Vertical spreading of two-dimensional crystalline colloidal arrays // J. Mater. Chem. C. 2013. V. 1. P. 6099-6102.

33. Zhang J.-T., Chao X., Liu X., Asher S.A. Twodimensional array Debye ring diffraction protein recognition sensing // Chem. Commun. 2013. V. 49. P. 6337-6339.

34. Laghaei R., Asher S.A., Coalson R.D. Langevin dynamics simulation of 3D colloidal crystal vacancies and phase transitions // J. Phys. Chem. B. 2013. V. 117. P. 5271-5279.

35. Zhang J.-T., Wang L., Lamont D.N., Velankar S.S., Asher S.A. Fabrication of large-area twodimensional colloidal crystals // Angew. Chem. Int. Ed. 2012. V. 51. P. 6117-6120.

36. Tikhonov A., Kornienko N., Zhang J.-T., Wang L., Asher S. A. Reflectivity enhanced two-dimensional dielectric particle array monolayer diffraction // J. Nanophotonics. 2012. V. 6. 063509.

37. Kelly J.A., Shukaliak A.M., Cheung C.C.Y., Shopsowitz K.E., Hamad W.Y., MacLachlan M.J. Responsive photonic hydrogels based on nanocrystalline cellulose // Angew. Chem. Int. Ed. 2013. V. 52. P. 8912-8916.

38. Khan M.K., Giese M., Yu M., Kelly J.A., Hamad W.Y., MacLachlan M.J. Flexible mesoporous photonic resins with tunable chiral nematic structures // Angew. Chem. Int. Ed. 2013. V. 52. P. 8921-8924.

39. Stein A., Wilson B.E., Rudisill S.G. Design and functionality of colloidal-crystal-templated materials - chemical applications of inverse opals // Chem. Soc. Rev. 2013. V. 42. P. 2763-2803.

40. Xia Y., Gates B., Yin Y., Lu Y. Monodispersed colloidal spheres: Old materials with new applications // Adv. Mater. 2000. V. 12. P. 693-713.

41. Iler R.K. The chemistry of silica: Solubility, polymerization, colloid and surface properties and biochemistry. New York: Wiley, 1979. 866 р.

42. Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range // J. Colloid Interface Sci. 1968. V. 26. P. 62-69.

43. Matijevic E. Uniform inorganic colloid dispersions. Achievements and challenges // Langmuir. 1994. V. 10. P. 8-16.

44. Im S.H., Lim Y.T., Suh D.J., Park O.O. Threedimensional self-assembly of colloids at a water-air interface: A novel technique for the fabrication of photonic bandgap crystals // Adv. Mater. 2002. V. 14. P. 1367-1369.

45. Nishijima Y., Ueno K., Juodkazis S., Mizeikis V., Misawa H., Tanimura T., Maeda K. Lasing with welldefined cavity modes in dye-infiltrated silica inverse opals // Opt. Express. 2007. V. 15. P. 12979-12988.

46. Aguirre C.I., Reguera E., Stein A. Colloidal photonic crystal pigments with low angle dependence // ACS Appl. Mater. Interfaces. 2010. V. 2. P. 3257-3262.

47. Cai Z., Liu Y. J., Teng J., Lu X. Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres // ACS Appl. Mater. Interfaces. 2012. V. 4. P. 5562-5569.

48. von Freymann G., Kitaev V., Lotsch B.V., Ozin G.A. Bottom-up assembly of photonic crystals // Chem. Soc. Rev. 2013. V. 42. P. 2528-2554.

49. Pieranski P. Colloidal crystals // Contemp. Phys. 1983. V. 24. P. 25-73.

50. Van Negen W., Shook I. Equilibrium properties of suspensions // Adv. Colloid Interface Sci. 1984. V. 21. P. 119-194.

51. Massa W. Kristallstrukturbestimmung: 8 ed. Wiesbaden: Springer Spektrum, 2015. 243 р.

52. Fudouzi H. Fabricating high-quality opal films with uniform structure over a large area // J. Colloid Interface Sci. 2004. V. 275. P. 277-283.

53. Lee Y.-J., Braun P. V. Tunable inverse opal hydrogel pH sensors // Adv. Mater. 2003. V. 15. P. 563-566.

54. Aguirre C.I., Reguera E., Stein A. Tunable colors in opals and inverse opal photonic crystals // Adv. Funct. Mater. 2010. V. 20. P. 2565-2578.

55. Kim S.-H., Jeon S.-J., Jeong W.C., Park H.S., Yang S.-M. Optofluidic synthesis of electroresponsive photonic Janus balls with isotropic structural colors // Adv. Mater. 2008. V. 20. P. 4129-4134.

56. Ge J., Lee H., He L., Kim J., Lu Z., Kim H., Goebl J., Kwon S., Yin Y. Magnetochromatic microspheres: Rotating photonic crystals // J. Am. Chem. Soc. 2009. V. 131. P. 15687-15694.

57. Konopsky V.N., Alieva E.V. Photonic crystal surface waves for optical biosensors // Anal. Chem. 2007. V. 79. P. 4729-4735.

58. Saito H., Takeoka Y., Watanabe M. Simple and precision design of porous gel as a visible indicator for ionic species and concentration // Chem. Commun. 2003. P. 2126-2127.

59. Kim S.-H., Lee S.Y., Yang S.-M., Yi G.-R. Selfassembled colloidal structures for photonics // NPG Asia Mater. 2011. V. 3(1). P. 25-33.

60. Orosco M.M., Pacholski C., Sailor M.J. Real-time monitoring of enzyme activity in a mesoporous silicon double layer // Nat. Nanotechnol. 2009. V. 4. P. 255-258.

61. Bonifacio L.D., Puzzo D.P., Breslav S., Willey B.M., McGeer A., Ozin G.A. Towards the photonic nose: a novel platform for molecule and bacteria identification // Adv. Mater. 2010. V. 22. P. 1351-1354.

62. Colodrero S., Ocana M., Miguez H. Nanoparticle-based one-dimensional photonic crystals // Langmuir. 2008. V. 24. P. 4430-4434.

63. Giese M., Blusch L.K., Khan M.K., Hamad W.Y., MacLachlan M.J. Responsive mesoporous photonic cellulose films by supramolecular contemplating // Angew. Chem. Int. Ed. 2014. V. 53. P. 8880-8884.

64. Lee K., Asher S.A. Photonic crystal chemical sensors: pH and ionic strength // J. Am. Chem. Soc. 2000. V. 122. P. 9534-9537.

65. Asher S.A., Alexeev V.L., Goponenko A.V., Sharma A.C., Lednev I.K., Wilcox C.S., Finegold D.N. Photonic crystal carbohydrate sensors: low ionic strength sugar sensing // J. Am. Chem. Soc. 2003. V. 125. P. 3322-3329.

66. Xu X., Goponenko A.V., Asher S.A. Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials // J. Am. Chem. Soc. 2008. V. 130. P. 3113-3119.

67. Gu Z.-Z., Fujishima A., Sato O. Photochemically tunavble colloidal crystals // J. Am. Chem. Soc. 2000. V. 122. P. 12387-12388.

68. Kubo S., Gu Z.-Z., Takahashi K., Ohko Y., Sato O., Fujishima A. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition // J. Am. Chem. Soc. 2002. V. 124. P. 10950-10951.

69. Kubo S., Gu Z.-Z., Takahashi K., Fujishima A., Segawa H., Sato O. Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure // J. Am. Chem. Soc. 2004. V. 126. P. 8314-8319.

70. Fenzl C., Hirsch T., Wolfbeis O. Photonic crystal based sensor for organic solvents and for solvent-water mixtures // Sensors. 2012. V. 12. P. 16954-16963.

71. Fenzl C., Wilhelm S., Hirsch T., Wolfbeis O.S. Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 173-178.

72. Козлов А.А., Абдуллаев С.Д., Грицкова И.А., Иванов А.В., Флид В.Р., Корешкова А.Н. Механизм спектральных сдвигов в материалах химических сенсоров на основе фотонных кристаллов // Тонкие химические технологии. 2015. Т. 10. № 6. С. 58-63.

73. Иванов А.В., Козлов А.А., Корешкова А.Н., Абдуллаев С.Д., Федорова И.А. Спектры отражения органических матриц на основе фотонных кристаллов из полистирольных микросфер диаметром 230 нм // Вестник Московского университета. Серия 2: Химия. 2016. T. 57. № 6. С. 404-409.

74. Fudouzi H., Xia Y. Photonic papers and inks: Color writing with colorless materials // Adv. Mater. 2003. V. 15. P. 892-896.

75. Fudouzi H., Xia Y. Colloidal crystals with tunable colors and their use as photonic papers // Langmuir. 2003. V. 19. P. 9653-9660.

76. Arsenault A.C., Clark T.J., von Freymann G., Cademartiri L., Sapienza R., Bertolotti J., Vekris E., Wong S., Kitaev V., Manners I., Wang R. Z., John S., Wiersma D., Ozin G. A. From color fingerprinting to the control of photoluminescence in elastic photonic crystals // Nat. Mater. 2006. V. 5. P. 179-184.

77. Li J., Wu Y., Fu J., Cong Y., Peng J., Han Y. Reversibly strain-tunable elastomeric photonic crystals // Chem. Phys. Lett. 2004. V. 390. P. 285-289.

78. Jethmalani J.M., Ford W.T. Diffraction of visible light by ordered monodisperse silica-poly(methyl acrylate) composite films // Chem. Mater. 1996. V. 8. P. 2138-2146.

79. Foulger S.H., Jiang P., Lattam A.C., Smith D.W., Ballato J. Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays // Langmuir. 2001. V. 17. P. 6023-6026.

80. Foulger S.H., Jiang P., Lattam A., Smith D.W., Ballato J., Dausch D.E, Grego S., Stoner B. R. Photonic crystal composites with reversible high-frequency stop band shifts // Adv. Mater. 2003. V. 15. P. 685-689.

81. Wang X., Wolfbeis O.S., Meier R.J. Luminescent probes and sensors for temperature // Chem. Soc. Rev. 2013. V. 42. P. 7834-7869.

82. Xu D.D., Yu H.A., Xu Q., Wang K. Thermoresponsive photonic crystal: Synergistic effect of poly(N-isopropylacrylannide)-co-acrylic acid and Morpho butterfly wing // Acs. Appl. Mater. Interf. 2015. V. 7. P. 8750-8756.

83. Weissman J.M., Sunkara H.B., Tse A.S., Asher S.A. Thermally switchable periodicities and diffraction from mesoscopically ordered materials // Science. 1996. V. 274. P. 959-963.

84. Debord J.D., Lyon L.A. Thermoresponsive photonic crystals// J. Phys. Chem. B. 2000. V. 104. P. 6327-6331.

85. Hu Z., Lu X., Gao J. Hydrogel opals //Adv. Mater. 2001. V. 13. P. 1708-1712.

86. Reese C.E., Mikhonin A.V., Kamenjicki M., Tikhonov A., Asher S.A. Nanogel nanosecond photonic crystal optical switching // J. Am. Chem. Soc. 2004. V. 126. P. 1493-1496.

87. Hu Y., Wang J., Wang H., Wang Q., Zhu J., Yang Y. Microfluidic fabrication and thermoreversible response of core/shell photonic crystalline microspheres based on deformable nanogels // Langmuir. 2012. V. 28. P. 17186-17192.

88. Wu G., Jiang Y., Xu D., Tang H., Liang X., Li G. Thermoresponsive inverse opal films fabricated with liquid-crystal elastomers and nematic liquid crystals // Langmuir. 2011. V. 27. P. 1505-1509.

89. Ballato J., James A. A ceramic photonic crystal temperature sensor // J. Am. Ceram. Soc. 1999. V. 82. P. 2273-2275.

90. Honda M., Seki T., Takeoka Y. Dual tuning of the photonic band-gap structure in soft photonic crystals // Adv. Mater. 2009. V. 21. P. 1801-1804.

91. Jeong U., Xia Y. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids // Angew. Chem. 2005. V. 117. P. 3159-3163; Angew. Chem. Int. Ed. 2005. V. 44. P. 3099-3103.

92. Pevtsov A.B., Kurdyukov D.A., Golubev V.G., Akimov A.V., Meluchev A.A., Sel’kin A.V., Kaplyanskii A.A., Yakovlev D.R., Bayer M. Ultrafast stop band kinetics in a three-dimensional opal-VO2 photonic crystal controlled by a photoinduced semiconductormetal phase transition // Phys. Rev. B. 2007. V. 75. P. 153101-153105.

93. Zhou J., Sun C.Q., Pita K., Lam Y.L., Zhou Y., Ng S.L., Kam C.H., Li L.T., Gui Z.L. Thermally tuning of the photonic band gap of SiO2 colloidcrystal infilled with ferroelectric BaTiO3 // Appl. Phys. Lett. 2001. V. 78. P. 661-663.

94. Tétreault N., Miguez H., Yang S.M., Kitaev V., Ozin G.A. Refractive index patterns in silicon inverted colloidal photonic crystals // Adv. Mater. 2003. V. 15. P. 1167-1172.

95. Exner A.T., Pavlichenko I., Lotsch B.V., Scarpa G., Lugli P. Low-cost thermo-optic imaging sensors: a detection principle based on tunable one-dimensional photonic crystals // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 1575-1582.

96. Kamenjicki M., Lednev I.K., Mikhonin A., Kesavamoorthy R., Asher S.A. Photochemically controlled photonic crystals // Adv. Funct. Mater. 2003. V. 13. P. 774-780.

97. Maurer M.K., Lednev I.K., Asher S.A. Photoswitchable spirobenzopyran-based photochemically controlled photonic crystal // Adv. Funct. Mater. 2005. V. 15. P. 1401-1406.

98. Hwang K., Kwak D., Kang C., Kim D., Ahn Y., Kang Y. Electrically tunable hysteretic photonic gels for nonvolatile display pixels // Angew. Chem. 2011. V. 123. P. 6435-6438; Angew. Chem. Int. Ed. 2011. V. 50. P. 6311-6314.

99. Shimoda Y., Ozaki M., Yoshino K. Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal // Appl. Phys. Lett. 2001. V. 79. P. 3627-3629.

100. Arsenault A.C., Miguez H., Kitaev V., Ozin G.A., Manners I. A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: A step towards photonic ink (P-Ink) // Adv. Mater. 2003. V. 15. P. 503-507.

101. Arsenault A.C., Puzzo D.P., Manners I., Ozin G.A. Photonic-crystal full-colour displays // Nat. Photonics. 2007. V. 1. P. 468-472.

102. Puzzo D.P., Arsenault A.C., Manners I., Ozin G.A. Electroactive inverse opal: A single material for all colors // Angew. Chem. 2009. V. 121. P. 961-965; Angew. Chem. Int. Ed. 2009. V. 48. P. 943-947

103. Ueno K., Matsubara K., Watanabe M., Takeoka Y. An electro- and thermochromic hydrogel as a fullcolor indicator // Adv. Mater. 2007. V. 19. P. 2807-2812.

104. Ueno K., Sakamoto J., Takeoka Y., Watanabe M. Electrochromism based on structural colour changes in a polyelectrolyte gel // J. Mater. Chem. 2009. V. 19. P. 4778-4783.

105. Zhao Y., Zhang Y.-N., Wang Q. Research advances of photonic crystal gas and liquid sensors // Sens. Actuators B. 2011. V. 160. P. 1288-1297.

106. Bogomolov V.N., Gaponenko S.V., Germanenko I.N., Kapitonov A.M., Petrov E.P., Gaponenko N.V., Prokofiev A.V., Ponyavina A.N., Silvanovich N.I., Samoilovich S.M. Photonic band gap phenomenon and optical properties of artificial opals // Phys. Rev. E. 1997. V. 55. P. 7619-7625.

107. Blanford C.F., Schroden R.C., Al-Daous M., Stein A. Tuning solvent-dependent color changes of threedimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications // Adv. Mater. 2001. V. 13. P. 26-29.

108. Burgess I.B., Koay N., Raymond K.P., Kolle M., Lončar M., Aizenberg J. Wetting in color: colorimetric differentiation of organic liquids with high selectivity // ACS Nano. 2012. V. 6. P. 1427-1437.

109. Raymond K.P., Burgess I.B., Kinney M.H., Lončar M., Aizenberg J. Combinatorial wetting in colour: An optofluidic nose // Lab Chip. 2012. V. 12. P. 3666-3669.

110. Fuertes M.C., López-Alcaraz F.J., Marchi M.C., Troiani H.E., Luca V., Miguez H., Soler-Illia G.J.D. A. Photonic crystals from ordered mesoporous thin-film functional building blocks // Adv. Funct. Mater. 2007. V. 17. P. 1247-1254.

111. Choi S.Y., Mamak M., von Freymann G., Chopra N., Ozin G.A. Mesoporous Bragg stack color tunable sensors // Nano Lett. 2006. V. 6. P. 2456-2461.

112. Yao K., Shi Y. High-Q Width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing // Opt. Express. 2012. V. 20. P. 27039-27044.

113. Thompson C.M., Ruminski A.M., Sega A.G., Sailor M.J., Miskelly G.M. Preparation and characterization of pore-wall modification gradients generated on porous silicon photonic crystals using diazonium salts // Langmuir. 2011. V. 27. P. 8967-8973.

114. Huang Y., Pandraud G., Sarro P.M. Reflectancebased two-dimensional TiO2 photonic crystal liquid sensors // Opt. Lett. 2012. V. 37. P. 3162-3164.

115. Kang Y., Walish J.J., Gorishnyy T., Thomas E.L. Broad-wavelength-range chemically tunable block-copolymer photonic gels // Nat. Mater. 2007. V. 6. P. 957-960.

116. Yang H., Jiang P., Jiang B. Vapor detection enabled by self-assembled colloidal photonic crystals // J. Colloid Interface Sci. 2012. V. 370. P. 11-18.

117. Zhang Y., Fu Q., Ge J. Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum // Nat. Commun. 2015. V. 6. P. 7510. doi: 10.1038/ncomms8510.

118. Waterhouse G.I.N., Metson J.B., Idriss H., Sun- Waterhouse D. Physical and optical properties of inverse opal CeO2 photonic crystals// Chem. Mater. 2008. V. 20. P. 1183-1190.

119. Cai Z., Liu Y.J., Lu X., Teng J. In situ «doping» inverse silica opals with size-controllable gold nanoparticles for refractive index sensing // J. Phys. Chem. C. 2013. V. 117. P. 9440-9445.

120. Wu Y., Li F., Zhu W., Cui J., Tao C., Lin C., Hannam P.M., Li G. Metal-organic frameworks with a three-dimensional ordered macroporous structure: Dynamic photonic materials // Angew. Chem. 2011. V. 123. P. 12726-12730; Angew. Chem. Int. Ed. 2011. V. 50. P. 12518-12522.

121. Kumano N., Seki T., Ishii M., Nakamura H., Takeoka Y. Tunable angle-independent structural color from a phase-separated porous gel // Angew. Chem. 2011. V. 123. P. 4098-4101; Angew. Chem. Int. Ed. 2011. V. 50. P. 4012-4015.

122. Tian E., Wang J., Zheng Y., Song Y., Jiang L., Zhu D. Colorful humidity sensitive photonic crystal hydrogel // J. Mater. Chem. 2008. V. 18. P. 1116-1122.

123. Xuan R., Wu Q., Yin Y., Ge J. Magnetically assembled photonic crystal film for humidity sensing // J. Mater. Chem. 2011. V. 21. P. 3672-3676.

124. Huang J., Tao C., An Q., Lin C., Li X., Xu D., Wu Y., Li X., Shen D., Li G. Visual indication of enviromental humidity by using poly(ionic liquid) photonic crystals // Chem. Commun. 2010. V. 46. P. 4103-4105.

125. Hu H., Chen Q.-W., Cheng K., Tang J. Visually readable and highly stable self-display photonic humidity sensor // J. Mater. Chem. 2012. V. 22. P. 1021-1027.

126. Li C., Lotsch B.V. Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing // Chem. Commun. 2012. V. 48. P. 6169-6171.

127. Zhang J.-T., Wang L., Luo J., Tikhonov A., Kornienko N., Asher S.A. 2-D array photonic crystal sensing motif // J. Am. Chem. Soc. 2011. V. 133. P. 9152-9155.

128. Asher S.A., Kimble K.W., Walker J.P. Enabling thermoreversible physically cross-linked polymerized colloidal array photonic crystals // Chem. Mater. 2008. V. 20. P. 7501-7509.

129. Yang Q., Zhu S., Peng W., Yin C., Wang W., Gu J., Zhang W., Ma J., Deng T., Feng C., Zhang D. Bioinspired fabrication of hierarchically structured, phtunable photonic crystals with unique transition // ACS Nano. 2013. V. 7. P. 4911-4918.

130. Huang Y., Li F.Y., Ye C., Qin M., Ran W., Song Y. A photochromic sensor microchip for highperformance multiplex metal ions detection // Scientific Rep. 2015. V. 5. P. 9724. DOI: 10.1038/srep09724/

131. Li L., Long Y., Gao J.M., Song K., Yang G. Label-free and pH-sensitive colorimetric materials for the sensing of urea // Nanoscale. 2016. V. 8. P. 4458-4462.

132. Fudouzi H., Xia Y. Photonic papers and inks: Color writing with colorless materials // Adv. Mater. 2003. V. 15. P. 892-896.

133. Fudouzi H., Xia Y. Colloidal crystals with tunable colors and their use as photonic papers // Langmuir. 2003. V.19. P. 9653-9660

134. Endo T., Yanagida Y., Hatsuzawa T. Colorimetric detection of volatile organic compounds using a colloidal crystal-based chemical sensor for environmental applications // Sens. Actuators B. 2007. V. 125. P. 589-595.

135. Pan Z., Ma J., Yan J., Zhou M., Gao J. Response of inverse-opal hydrogels to alcohols // J. Mater. Chem. 2012. V. 22. P. 2018-2025.

136. Wang Z., Zhang J., Li J., Xie J., Li Y., Liang S., Tian Z., Li C., Wang Z., Wang T., Zhang H., Yang B. Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals // J. Mater. Chem. 2011. V. 21. P. 1264-1270.

137. Li Y.Y., Cunin F., Link J.R., Gao T., Betts R.E., Reiver S.H., Chin V., Bhatia S.N., Sailor M.J. Polymer replicas of photonic porous silicon for sensing and drug delivery applications // Science. 2003. V. 299. P. 2045-2047.

138. Chen M., Zhou L., Guan Y., Zhang Y. Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates // Angew. Chem. Int. Ed. 2013. V. 52. P. 9961-9965.

139. Chen C., Zhu Y., Bao H., Shen J., Jiang H., Peng L., Yang X., Li C., Chen G. Ethanol-assisted multisensitive poly(vinyl alcohol) photonic crystal sensor // Chem. Commun. 2011. V. 47. P. 5530-5532.

140. Asher S.A., Sharma A.C., Goponenko A.V., Ward M.M. Photonic crystal aqueous metal cation sensing materials // Anal. Chem. 2003. V. 75. P. 1676-1683.

141. Yan F., Asher S. Cation identity dependence of crown ether photonic crystal Pb2+ sensing // Anal. Bioanal. Chem. 2007. V. 387. P. 2121-2130.

142. Holtz J.H., Asher S.A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials // Nature. 1997. V. 389. P. 829-832.

143. Holtz J.H., Holtz J.S.W., Munro C.H., Asher S.A. Intelligent polymerized crystalline colloidal arrays: Novel chemical sensor materials // Anal. Chem. 1998. V. 70. P. 780-791.

144. Reese C.E., Asher S.A. Photonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments // Anal. Chem. 2003. V. 75. P. 3915-3918.

145. Goponenko A.V., Asher S.A. Modeling of stimulated hydrogel volume changes in photonic crystal Pb2+ sensing materials // J. Am. Chem. Soc. 2005. V. 127. P. 10753-10759.

146. Muscatello M.M.W., Asher S.A. Poly(vinyl alcohol) rehydratable photonic crystal sensor materials // Adv. Funct. Mater. 2008. V. 18. P. 1186-1193.

147. Jiang H., Zhu Y., Chen C., Shen J., Bao H., Peng L., Yang X., Li C. Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel // New J. Chem. 2012. V. 36. P. 1051-1056.

148. Hu X., Huang J., Zhang W., Li M., Tao C., Li G. Photonic ionic liquids polymer for naked-eye detection of anions // Adv. Mater. 2008. V. 20. P. 4074-4078.

149. Hu X., Li G., Huang J., Zhang D., Qiu Y. Construction of self-reporting specific chemical sensors with high sensitivity // Adv. Mater. 2007. V. 19. P. 4327-4332.

150. Zhang C.J., Losego M.D., Braun P.V. Hydrogelbased glucose sensors: Effects of phenylboronic acid chemical structure on response // Chem. Mater. 2013. V. 25. P. 3239-3250.

151. Zhang C.J., Cano G.G., Braun P.V. Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents // Adv. Mater. 2014. V. 26. P. 5678-5683.

152. Zhong Q.F., Xie Z.Y., Zhu C., Yang Z., Gu Z.Z. Carbon inverse opal rods for nonenzymatic cholesterol detection // Small. 2015. V. 11. P. 5766-5770.

153. Couturier J.P., Sutterlin M., Laschewsky A., Hettrich C., Wischerhoff E. Responsive inverse opal hydrogels for the sensing of macromolecules // Angew. Chem. Int. Ed. 2015. V. 54. P. 6641-6644.

154. Mu Z.D., Zhao X.W., Huang Y., Lu M., Gu Z.Z. Photonic crystal hydrogel enhanced plasmonic staining for multiplexed protein analysis // Small. 2015. V. 11. P. 6036-6043.

155. Zhang J.T., Cai Y., Kwak D.H., Liu X., Asher S.A. Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A // Anal. Chem. 2014. V. 86. P. 9036-9041.

156. MacConaghy K.I., Geary C.I., Kaar J.L., Stoykovich M.P. Photonic crystal kinase biosensor // J. Am. Chem. Soc. 2014. V. 136. P. 6896-6899.

157. Cai Z.Y, Kwak D.H., Punihaole D., Hong Z., Velank ar S.S., Liu X., Asher S.A. A photonic crystal protein hydrogel sensor for Candida albicans // Angew. Chem. Int. Ed. 2015. V. 54. P. 13036-13040.

158. Griffete N., Frederich H., Matre A., Schwob C., Ravaine S., Carbonnier B., Chehimi M., Mangeney C. Introduction of a planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A // J. Colloid Interface Sci. 2011. V. 364. P. 18-23.

159. Kimble K.W., Walker J.P., Finegold D.N., Asher S.A. Progress toward the development of a point-of-care photonic crystal ammonia sensor // Anal. Bioanal. Chem. 2006. V. 385. P. 678-685.

160. Ozin G.A., Arsenault A.C. P-Ink and Elast-Ink from lab to market // Mater. Today. 2008. V. 11. P. 44-51.

161. Mandal S., Goddard J.M., Erickson D.A multiplexed optofluidic biomolecular sensor for low mass detection // Lab Chip. 2009. V. 9. P. 2924-2932.

162. Fujishima M., Sakata S., Iwasaki T., Uchida K. Implantable photonic crystal for reflection-based optical sensing of biodegradation // J. Mater. Sci. 2008. V. 43. P. 1890-1896.

163. Li M., He F., Liao Q., Liu J., Xu L., Jiang L., Song Y., Wang S., Zhu D. Ultrasensitive DNA detection using photonic crystals // Angew. Chem. 2008. V. 120. P. 7368-7372; Angew. Chem. Int. Ed. 2008. V. 47. P. 7258-7262.

164. Guan B., Magenau A., Kilian K.A., Ciampi S., Gaus K., Reece P.J., Gooding J.J. Mesoporous silicon photonic crystal microparticles: Towards singlecell optical biosensors // Faraday Discuss. 2011. V. 149. P. 301-317.

165. Li J., Zhao X., Wie H., Gu Z.-Z., Lu Z. Macroporous ordered titanium dioxide (TiO2) inverse opal as a new label-free immunosensor // Anal. Chim. Acta. 2008. V. 625. P. 63-69.

166. Zhao X., Cao Y., Ito F., Chen H.-H., Nagai K., Zhao Y.-H., Gu Z.-Z. Colloidal crystal beads as supports for biomolecular screening // Angew. Chem. 2006. V. 118. P. 6989-6992; Angew. Chem. Int. Ed. 2006. V. 45. P. 6835-6838.

167. Badugu R., Nowaczyk K., Descrovi E., Lakowicz J.R. Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals // Anal. Biochem. 2013. V. 442. P. 83-96.


Для цитирования:


Козлов А.А., Гаврилов Ю.А., Иванов А.В., Аксенов А.С., Флид В.Р. СЕНСОРЫ НА ОСНОВЕ ФОТОННЫХ КРИСТАЛЛОВ. Тонкие химические технологии. 2018;13(1):5-21. https://doi.org/10.32362/2410-6593-2018-13-1-5-21

For citation:


Kozlov A.A., Gavrilov Y.A., Ivanov A.V., Aksenov A.S., Flid V.R. SENSORS BASED ON PHOTONIC CRYSTALS. Fine Chemical Technologies. 2018;13(1):5-21. (In Russ.) https://doi.org/10.32362/2410-6593-2018-13-1-5-21

Просмотров: 61


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)