Preview

Fine Chemical Technologies

Advanced search

ENERGy EFFICIENCy OF THE COMPLEX COLUMN FOR THE SEPARATION OF VAPOR CRACkING PRODUCTS UNDER THE DEPENDING ON FEED COMPOSITION

https://doi.org/10.32362/2410-6593-2017-12-3-33-43

Full Text:

Abstract

The dependence of the energy consumption decrease on the different feed composition for the separation of C4+ vapor cracking fraction by means of complex columns implementation is investigated. Distillation sequences consisting of simple columns and partially thermally coupled distillation columns are compared. Cases of direct and indirect separation for all the schemes are considered. In order to reduce capital cost and industrial areas the implementation of dividing wall columns was proposed. These dividing wall columns are the thermodynamic analogs of partially thermally coupled distillation flowsheets. Analysis of temperature, liquid and vapor profiles in the partially thermally coupled distillation sequence revealed that only one column in the original flowsheets requires a structural change when converting it to the partially thermally coupled configuration. It is shown that the complex columns provide energy consumption reduction in the reboilers by 3-60% as compared to conventional distillation schemes.

About the Authors

S. O. Kocharyan
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow 119571, Russia


D. G. Rudakov
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow 119571, Russia


A. V. Timoshenko
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow 119571, Russia


References

1. Litvintsev I.Yu. Pyrolysis – the key process in petroleum chemistry // Sorosovskij obrazovatel`nyi zhurnal (Soros Educational Journal). 1999. № 12. P. 21–28. (in Russ.).

2. Meyers R.A. Handbook of petroleum refining processes. New York: McGraw – Hill Companies. 2004. 944 p.

3. Erofeev V.I., Maskaev G.P. Production lower olefins from hydrocarbons. Collaborative process of thermal pyrolysis of wide fraction of light hydrocarbons and straight gasoline // Int. J. Appl. Fund. Res. 2015. V. 9. P. 260–263.

4. Timoshenko A.V., Anokhina E.A., Buev D. L. Application of graphs of distillation trajectories to synthesis of separation flowsheets // Theoretical Foundations of Chemical Engineering. 2004. V. 38. № 2. P. 1–5.

5. Timoshenko A.V., Serafimov L.A. Graphs analysis as a method of systems analysis of structural multiplicity of rectification separation flow sheets // Theoretical Foundations of Chemical Engineering. 1997. V. 31. № 5. Р. 480–486.

6. Petlyuk F.B., Platonov V.M., Slavinskiy D.M. The thermodynamic optimal methods of separation multicomponent mixture // Chim. prom. (Chemical Iindustry). 1965. № 3. P. 206–211. (in Russ.).

7. Hiroya S., Shamsuzzoha M. Process design and control of dividing wall columns // Catalysts in Petroleum. Refining & Petrochemicals KFUPM Dhahran. 2012. P. 48–58.

8. Dejanovića I., Matijaševića L., Olujićb Ž. Dividing wall column application for platformate splitter – A case study // Comp. Aided Chem. Eng. 2010. V. 28. P. 655–660.

9. Lee S.H., Shamsuzzoha M., Han M., Kim Y.H., Lee M. Study of the structural characteristics of a divided wall column using the sloppy distillation arrangement // Korean J. Chem. Eng. 2011. V. 28. № 2. P. 348–356.

10. Vikas K. Sangal, Vineet Kumar, Indra Mani Mishra. Optimization of a divided wall column for the separation of C4–C6 normal paraffin mixture using box – behnken design // Chem. Industry and Chem. Eng. Quarterly. 2013. V. 19. P. 107−119.

11. Michael A.S., Douglas G.S., James M.H., Steven P.R., Mohammed S.S., Dennis E. O`Brien. Reduce costs with dividing– wall columns // Reactions and Separations. 2002. V. 98. № 5. P. 64–71.

12. Aurangzeb Md, Jana A.K. Dividing wall column: Improving thermal efficiency, energy savings and economic performance // Appl. Therm. Eng. 2016. V. 106. P. 1033–1041.

13. José A.C., Ignacio E.G. Optimal synthesis of thermally coupled distillation sequences using a novel MILP approach // Computers and Chem. Eng. 2014. V. 61. P. 118–135.

14. Massimiliano E., Giuseppe T., Ben-Guang R., Daniele D., Ilkka T. Energy saving and capital cost evaluation in distillation column sequences with a divided wall column // Chem. Eng. Res. & Design. 2009.V. 87. P. 1649–1657.

15. Fang J., Zhao H., Qi J., Li C., Qi J., Guo J. Energy conserving effects of dividing wall column. // Chin. J. Chem. Eng. 2015. V. 23. P. 934–940.

16. Olujić Ž., Jödecke M., Shilkin A., Schuch G., Kaibel B. Equipment improvement trends in distillation // Chem. Eng. and Proces.: Process Intensification. 2009. V. 48. № 6. P. 1089–1104.

17. Skvortsova M.I., Timoshenko A.V., Rudakov D.G. Synthesis of partially thermally coupled distillation flowsheets: Zeotropic mixtures // Theoretical Foundations of Chemical Engineering. 2011. V. 45. № 1. P. 99–107.

18. Timoshenko A.V., Anokhina E.A., Serafimov L.A. Synthesis of partially thermally coupled distillation flowsheets. M.: MITHT, 2007. 60 p. (in Russ.).

19. Aspen HYSYS Unit Operations Guide V 8.8. Aspen Technology. Inc. Burlington. USA. 2015. 1722 p.

20. Timoshenko A.V., Patkina O.D., Serafimov L.A. Synthesis of distillation flowsheets with complex column // Chimicheskaya tekhnologiya (Chemical Technology). 2001. № 6. P. 36–43. (in Russ.).


For citation:


Kocharyan S.O., Rudakov D.G., Timoshenko A.V. ENERGy EFFICIENCy OF THE COMPLEX COLUMN FOR THE SEPARATION OF VAPOR CRACkING PRODUCTS UNDER THE DEPENDING ON FEED COMPOSITION. Fine Chemical Technologies. 2017;12(3):33-43. (In Russ.) https://doi.org/10.32362/2410-6593-2017-12-3-33-43

Views: 178


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)