Preview

Fine Chemical Technologies

Advanced search

Quantum-chemical study of carborane(12) rearrangement mechanisms

Full Text:

Abstract

The search and analysis of the ground state, intermediate and transition states of carborane(12) thermal isomerization was performed by means of quantum-chemistry methods using B3LYP/6-311+G(d,p) and M062X/6-311+G(d,p) functionals. The framework rearrangement mechanisms such as the triangular face rotation, the pentagonal pyramid rotation, as well as mechanisms via cubeoctahedral and anticubeoctahedral transition states were studied.

About the Authors

A. Yu. Shkulipa
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


S. P. Knyazev
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


E. G. Gordeev
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


A. D. Kirilin
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


References

1. Grafstein D., Dvorak J. Neocarboranes, a new family of stable organoboranes isomeric with the carboranes // Inorg. Chem. 1963. V. 2. P. 1128–1133.

2. Papetti S., Heying T.L. p-Carborane [1,12-dicarbaclovododecaborane(12)] // J. Am. Chem. Soc. 1964. V. 86. P. 2295.

3. Grimes R.N. Carboranes. 2nd ed. – Academic Press, Elsevier Inc., 2011. 1139 p.

4. Kaczmarczyk A., Dobrott R.D., Lipscomb W.N. Reactions of B10H102ion // Proc. Nat. Acad. Sci. U.S. 1962. V. 48. P. 729–733.

5. Hoffmann R., Lipscomb W.N. Intramolecular isomerization and transformations in carboranes and substituted polyhedral molecules // Inorg. Chem. 1963. V. 2. P. 231–232.

6. Lipscomb W.N. Framework rearrangement in boranes and carboranes // Science. 1966. V.153. P. 373–378.

7. Kaesz H.D., Bau R., Beall H.A., Lipscomb W.N. Rearrangements in the icosahedral carboranes // J. Am. Chem. Soc. 1967. V. 89. P. 4218–4220.

8. Wong H.S., Lipscomb W.N. Studies on the thermal rearrangements of chlorophosphacarboranes. Molecular and crystal structure of 9,10-dichlorophosphacarborane // Inorg. Chem. 1975. V. 14. P. 1350–1357.

9. Muetterties E.L. Topological representation of stereoisomerism I. Polytopal rearrangements // J. Am. Chem. Soc. 1969. V. 91. P. 1636–1643.

10. Roberts Y.V., Johnson B.F.G. Dicarbadodecaborane rearrangements: An appraisal of rotational mechanisms // J. Chem. Soc. Dalton Trans. 1994. V. 5. P. 759–766.

11. Hart H.V., Lipscomb W.N. Thermal rearrangements of icosahedral carboranes. Molecular and crystal structure of 5,12-dichloro-l,7-dimethyl-l,7dicarba-closo-dodecaborane(12) // Inorg. Chem. 1973. V. 12. P. 2644–2649.

12. Hart H.V., Lipscomb W.N. Rearrangements of icosahedral monohalo-m-carboranes // J. Am. Chem. Soc. 1969. V. 91. P. 771–772.

13. Edvenson G.M., Gaines D.F. Thermal isomerization of regiospecifically 10B-labeled icosahedral carboranes // Inorg. Chem. 1990. V. 29. P. 1210–1216.

14. Wu H., Jones, Jr. M. The mechanism of rearrangement of the icosahedral carboranes // J. Am. Chem. Soc. 1989. V. 111. P. 5373–5384.

15. Roberts Y.V., Johnson B.F.G. Dicarbadodecaborane rearrangements: An appraisal of rotational mechanisms // J. Chem. Soc. Dalton Trans. 1994. V. 5. P. 759–766.

16. Garrioch R.M., Kuballa P., Low K.S., Rosair G.M., Welch A.J. The ‘1,2 to 1,2’ cage carbon isomerisation in bisphosphine carbanickelaboranes: Synthesis and spectroscopic and crystallographic characterization of 1,2-Ph2-4,4-(PMe2Ph)2-4,1,2-closo-NiC2B9H9, 1,2-Ph2-4,4-(PEt3)2-4,1,2-closo-NiC2B9H9 and 1,2-Ph2-4-(dppe)-4,1,2-closo-NiC2B9H9 // J. Organometallic Chem. 1999. V. 575. P. 57–62.

17. Robertson S., Ellis D., Rosair G.M., Welch A.J. Platination of [3-X-7,8-Ph2-7,8-nido-C2B9H8]2- (X = Et, F). Synthesis and characterization of slipped and 1,2 → 1,7 isomerised products // J. Organometallic Chem. 2003. V. 680. P. 286–293.

18. Robertson S., Garrioch R.M., Ellis D., McGrath Th.D., Hodson B.E., Rosair G.M., Welch A.J. Towards the mechanism of heteroborane isomerisation: 1,2 → 1,2 and 1,2 → 1,7 low-temperature isomerizations from metallations of [5-I-7,8-Ph2-7,8-nido-C2B9H8]2- // Inorganica Chim. Acta. 2005. V. 358. P. 1485–1493.

19. Ellis D., Garrioch R.M., Rosair G.M., Welch A.J. Isomerization following the platination of [7,8-Ph2-9,11-I2-7,8-nido-C2B9H7]2- // Polyhedron. 2006. V. 25. P. 915–922.

20. Welch A.J., Weller A.S. Synthesis and reactivity of 79-diphenyl-nido-carbaundecaboranes: Rearrangement processes in carbaplatinaboranes revisited // J. Chem. Soc. Dalton Trans. 1997. P. 1205–1212.

21. Perekalin D.S., Holub J., Golovanov D.G., Lyssenko K.A., Petrovskii P.V., Štíbr B., Kudinov A.R. Ferra- and ruthenatricarbollides CpFeC3B8H11 and CpRuC3B8H11 // Organometallics. 2005. V.24. P. 4387–4392.

22. King R.B. Chemical applications of topology and group theory. 11. Degenerate edges as a source of inherent fluxionality in deltahedra // Inorganica Chim. Acta. 1981. V. 49. P. 231–240.

23. Wales D.J., Bone R.G.A. Ab initio studies of fundamental cluster rearrangement mechanisms // J. Am. Chem. Soc. 1992. V.114. P. 5399–5406.

24. Wales D.J., Stone A.J. theoretical study of rearrangement in boranes // Inorg. Chem. 1987. V. 26. P. 3845–3850.

25. Gimarc B.M., Ott J.J. Isomers of C2B3H5 and the diamond-square-diamond rearrangement mechanism // Inorg. Chem. 1986. V. 25. P. 83–85.

26. Gimarc B.M., Ott J.J. Possible mechanisms for the isomerization of B9H92and C2B7H9 // Inorg. Chem. 1986. V. 25. P. 2708–2711.

27. Ott J.J., Brown C.A., Gimarc B.M. Diamond-square-diamond isomerization of C2B5H7 // Inorg. Chem. 1989. V. 28. P. 4269–4273.

28. Gimarc B.M., Ott J.J. Isomerization of carboranes C2B6H8, C2B8H10 and C2B9H11 by the diamond-square-diamond rearrangement // J. Am. Chem. Soc. 1987. V. 109. P. 1388–1392.

29. Gimarc B.M., Dai B., Warren D.S., Ott J.J. Isomers and isomerizations of C2B9H11 and a comparison of relative isomer stabilities // J. Am. Chem. Soc. 1990. V.112. P. 2591–2601.

30. Wales D.J., Mingos D.M.P., Zhenyang L. Skeletal rearrangements in clusters. 2. // Inorg. Chem. 1989. V. 28. P. 2154–2164.

31. Wales D.J., Mingos D.M.P. Skeletal rearrangements in clusters. III. Application of vibrational symmetry analyses // Polyhedron. 1989. V. 8. P. 1933–1938.

32. Wales D.J. Rearrangement mechanisms of B12H122- and C2B10H12 // J. Am. Chem. Soc. 1993. V. 115. P. 1557–1567.

33. Salinger R.M., Frye C.L. Facile polyhedral rearrangement of icosahedral silylcarboranes // Inorg. Chem. 1965. V. 4. P. 1815–1816.

34. Gimarc B.M., Warren D.S., Ott J.J., Brown C. Calculations for various structural forms of B12H122- as clues to the possible mechanisms for the isomerizations of C2B10H12 // Inorg. Chem. 1991. V. 30. P. 1598–1605.

35. Brown C.A., McKee M.L. Rearrangements in icosahedral boranes and carboranes revisited // J. Mol. Model. 2006. V. 12. P. 653–664.

36. Gaussian 09, Revision A.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H.Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox. – Gaussian, Inc., Wallingford CT, 2009.

37. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. V. 98. P. 5648–5652.

38. Zhao Y., Truhlar D. G. Comparative DFT study of van der Waals complexes: Rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimmers // J. Phys. Chem. 2006. V. 110. P. 5121–5129.

39. Sousa S.F., Fernandes P.A., Ramos M.J. General performance of density functionals // J. Phys. Chem. A. 2007. V. 111. P. 10439–10452.

40. Csonka G.I., Perdew J.P., Ruzsinszky A. Global hybrid functionals: A look at the engine under the hood // J. Chem. Theory Comput. 2010. V. 6. P. 3688–3703.

41. Zhao Y., Truhlar D.G. Density functionals with broad applicability in chemistry // Accounts Chem. Res. 2008. V. 41. № 2. P. 157–167.

42. Jacquemin D., Perpete E.A., Ciofini I., Adamo C., Valero R., Zhao Y., Truhlar D.G. On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies // J. Chem. Theory Comput. 2010. V. 6. P. 2071–2085. 43. Zhao Y., Truhlar D.G. Density Functional Theory for Reaction Energies: Test of Meta and Hybrid Meta Functionals, Range-Separated Functionals, and Other High-Performance Functionals // J. Chem. Theory Comput. 2011. V. 7. P. 669–676.


For citation:


Shkulipa A.Yu., Knyazev S.P., Gordeev E.G., Kirilin A.D. Quantum-chemical study of carborane(12) rearrangement mechanisms. Fine Chemical Technologies. 2013;8(1):56-61. (In Russ.)

Views: 76


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)